Advertisement

Variations of Marker Sets and Models for Standard Gait Analysis

  • Felix Stief
Reference work entry

Abstract

A variety of different approaches is used in 3D clinical gait analysis. This chapter provides an overview of common terms, different marker sets, underlying anatomical models, as well as a fundamental understanding of measurement techniques commonly used in clinical gait analysis and the consideration of possible errors associated with these different techniques. Besides the different marker sets, two main approaches can be used to quantify marker-based joint angles: a prediction approach based on regression equations and a functional approach. The prediction approach uses anatomical assumptions and anthropometric reference data to define the locations of joint centers/axes relative to specific anatomical landmarks. In the functional approach, joint centers are determined via optimization of marker movement. The accuracy of determining skeletal kinematics is limited by ambiguity in landmark identification and soft-tissue artifacts. When the intersubject variability of control data becomes greater than the expected change due to pathology, the clinical usefulness of the data becomes doubtful. To allow a practical interpretation of a comparison of approaches, differences and the measurement error should be quantified in the unit of interest (i.e., degree or percent). The highest reliability indices occurred in the hip and knee in the sagittal plane, with lowest reliability and highest errors for hip and knee rotation in the transverse plane. In addition, knowledge about sources of errors should be known before the approach is applied in practice.

Keywords

Marker sets Anatomical markers Technical markers Clusters Modeling Segment definition Prediction approach Functional approach Regression equations Conventional Gait Model Measurement error Soft-tissue artifacts Reliability Accuracy 

References

  1. Alexander EJ, Andriacchi TP (2001) Correcting for deformation in skin-based marker systems. J Biomech 34(3):355–361CrossRefGoogle Scholar
  2. Asano T, Akagi M, Nakamura T (2005) The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image-matching technique. J Arthroplast 20(8):1060–1067.  https://doi.org/10.1016/j.arth.2004.08.005CrossRefGoogle Scholar
  3. Assi A, Sauret C, Massaad A, Bakouny Z, Pillet H, Skalli W, Ghanem I (2016) Validation of hip joint center localization methods during gait analysis using 3D EOS imaging in typically developing and cerebral palsy children. Gait Posture 48:30–35.  https://doi.org/10.1016/j.gaitpost.2016.04.028CrossRefGoogle Scholar
  4. Bell AL, Pedersen DR, Brand RA (1990) A comparison of the accuracy of several hip center location prediction methods. J Biomech 23(6):617–621CrossRefGoogle Scholar
  5. Benedetti MG, Catani F, Leardini A, Pignotti E, Giannini S (1998) Data management in gait analysis for clinical applications. Clin Biomech (Bristol, Avon) 13(3):204–215CrossRefGoogle Scholar
  6. Borhani M, McGregor AH, Bull AM (2013) An alternative technical marker set for the pelvis is more repeatable than the standard pelvic marker set. Gait Posture 38(4):1032–1037.  https://doi.org/10.1016/j.gaitpost.2013.05.019CrossRefGoogle Scholar
  7. Bruno P, Barden J (2015) Comparison of two alternative technical marker sets for measuring 3D pelvic motion during gait. J Biomech 48(14):3876–3882.  https://doi.org/10.1016/j.jbiomech.2015.09.031CrossRefGoogle Scholar
  8. Cappello A, Cappozzo A, La Palombara PF, Lucchetti L, Leardini A (1997) Multiple anatomical landmark calibration for optimal bone pose estimation. Hum Mov Sci 16(2–3):259–274.  https://doi.org/10.1016/S0167-9457(96)00055-3CrossRefGoogle Scholar
  9. Cappello A, Stagni R, Fantozzi S, Leardini A (2005) Soft tissue artifact compensation in knee kinematics by double anatomical landmark calibration: performance of a novel method during selected motor tasks. IEEE Trans Biomed Eng 52(6):992–998.  https://doi.org/10.1109/tbme.2005.846728CrossRefGoogle Scholar
  10. Cappozzo A (1984) Gait analysis methodology. Hum Mov Sci 3(1–2):27–50.  https://doi.org/10.1016/0167-9457(84)90004-6CrossRefGoogle Scholar
  11. Cappozzo A (1991) Three-dimensional analysis of human walking: experimental methods and associated artifacts. Hum Mov Sci 10(5):589–602.  https://doi.org/10.1016/0167-9457(91)90047-2CrossRefGoogle Scholar
  12. Cappozzo A, Catani F, Croce UD, Leardini A (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech (Bristol, Avon) 10(4):171–178CrossRefGoogle Scholar
  13. Cappozzo A, Catani F, Leardini A, Benedetti MG, Croce UD (1996) Position and orientation in space of bones during movement: experimental artefacts. Clin Biomech (Bristol, Avon) 11(2):90–100CrossRefGoogle Scholar
  14. Cappozzo A, Cappello A, Della Croce U, Pensalfini F (1997) Surface-marker cluster design criteria for 3-D bone movement reconstruction. IEEE Trans Biomed Eng 44(12):1165–1174.  https://doi.org/10.1109/10.649988CrossRefGoogle Scholar
  15. Chiari L, Della Croce U, Leardini A, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 2: instrumental errors. Gait Posture 21(2):197–211.  https://doi.org/10.1016/j.gaitpost.2004.04.004CrossRefGoogle Scholar
  16. Collins TD, Ghoussayni SN, Ewins DJ, Kent JA (2009) A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set. Gait Posture 30(2):173–180.  https://doi.org/10.1016/j.gaitpost.2009.04.004CrossRefGoogle Scholar
  17. Davis RB, DeLuca PA (1996) Clinical gait analysis: current methods and future directions. In: Harris GF, Smith PA (eds) Human motion analysis: current applications and future directions. The Institute of Electrical and Electronic Engineers Press, New York, pp 17–42Google Scholar
  18. Davis RB III, Õunpuu S, Tyburski D, Gage JR (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10(5):575–587.  https://doi.org/10.1016/0167-9457(91)90046-ZCrossRefGoogle Scholar
  19. Duffell LD, Hope N, McGregor AH (2014) Comparison of kinematic and kinetic parameters calculated using a cluster-based model and Vicon’s plug-in gait. Proc Inst Mech Eng H 228(2):206–210.  https://doi.org/10.1177/0954411913518747CrossRefGoogle Scholar
  20. Ehrig RM, Taylor WR, Duda GN, Heller MO (2006) A survey of formal methods for determining the centre of rotation of ball joints. J Biomech 39(15):2798–2809.  https://doi.org/10.1016/j.jbiomech.2005.10.002CrossRefGoogle Scholar
  21. Ehrig RM, Heller MO, Kratzenstein S, Duda GN, Trepczynski A, Taylor WR (2011) The SCoRE residual: a quality index to assess the accuracy of joint estimations. J Biomech 44(7):1400–1404.  https://doi.org/10.1016/j.jbiomech.2010.12.009CrossRefGoogle Scholar
  22. Ferber R, McClay Davis I, Williams DS 3rd, Laughton C (2002) A comparison of within- and between-day reliability of discrete 3D lower extremity variables in runners. J Orthop Res 20(6):1139–1145.  https://doi.org/10.1016/s0736-0266(02)00077-3CrossRefGoogle Scholar
  23. Ferrari A, Benedetti MG, Pavan E, Frigo C, Bettinelli D, Rabuffetti M, Crenna P, Leardini A (2008) Quantitative comparison of five current protocols in gait analysis. Gait Posture 28(2):207–216.  https://doi.org/10.1016/j.gaitpost.2007.11.009CrossRefGoogle Scholar
  24. Fukaya T, Mutsuzaki H, Wadano Y (2013) Interrater reproducibility of knee movement analyses during the stance phase: use of anatomical landmark calibration with a rigid marker set. Rehabil Res Pract 2013:692624.  https://doi.org/10.1155/2013/692624Google Scholar
  25. Fuller J, Liu LJ, Murphy MC, Mann RW (1997) A comparison of lower-extremity skeletal kinematics measured using skin- and pin-mounted markers. Hum Mov Sci 16(2–3):219–242.  https://doi.org/10.1016/S0167-9457(96)00053-XCrossRefGoogle Scholar
  26. Gao B, Zheng NN (2008) Investigation of soft tissue movement during level walking: translations and rotations of skin markers. J Biomech 41(15):3189–3195.  https://doi.org/10.1016/j.jbiomech.2008.08.028CrossRefGoogle Scholar
  27. Garling EH, Kaptein BL, Mertens B, Barendregt W, Veeger HE, Nelissen RG, Valstar ER (2007) Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. J Biomech 40(Suppl 1):S18–S24.  https://doi.org/10.1016/j.jbiomech.2007.03.003CrossRefGoogle Scholar
  28. Gorton GE 3rd, Hebert DA, Gannotti ME (2009) Assessment of the kinematic variability among 12 motion analysis laboratories. Gait Posture 29(3):398–402.  https://doi.org/10.1016/j.gaitpost.2008.10.060CrossRefGoogle Scholar
  29. Harrington ME, Zavatsky AB, Lawson SE, Yuan Z, Theologis TN (2007) Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging. J Biomech 40(3):595–602.  https://doi.org/10.1016/j.jbiomech.2006.02.003CrossRefGoogle Scholar
  30. Heller MO, Kratzenstein S, Ehrig RM, Wassilew G, Duda GN, Taylor WR (2011) The weighted optimal common shape technique improves identification of the hip joint center of rotation in vivo. J Orthop Res 29(10):1470–1475.  https://doi.org/10.1002/jor.21426CrossRefGoogle Scholar
  31. Holden JP, Stanhope SJ (1998) The effect of variation in knee center location estimates on net knee joint moments. Gait Posture 7(1):1–6CrossRefGoogle Scholar
  32. Holden JP, Orsini JA, Siegel KL, Kepple TM, Gerber LH, Stanhope SJ (1997) Surface movement errors in shank kinematics and knee kinetics during gait. Gait & Posture 5(3):217–227.  https://doi.org/10.1016/S0966-6362(96)01088-0CrossRefGoogle Scholar
  33. Isman RE, Inman VT (1969) Anthropometric studies of the human foot and ankle. Bull Prosthet Res 10(11):97–219Google Scholar
  34. Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV (1989) Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res 7(6):849–860.  https://doi.org/10.1002/jor.1100070611CrossRefGoogle Scholar
  35. Karlsson D, Tranberg R (1999) On skin movement artefact-resonant frequencies of skin markers attached to the leg. Hum Mov Sci 18(5):627–635.  https://doi.org/10.1016/S0167-9457(99)00025-1CrossRefGoogle Scholar
  36. Kisho Fukuchi R, Arakaki C, Veras Orselli MI, Duarte M (2010) Evaluation of alternative technical markers for the pelvic coordinate system. J Biomech 43(3):592–594.  https://doi.org/10.1016/j.jbiomech.2009.09.050CrossRefGoogle Scholar
  37. Kornaropoulos EI, Taylor WR, Duda GN, Ehrig RM, Matziolis G, Muller M, Wassilew G, Asbach P, Perka C, Heller MO (2010) Frontal plane alignment: an imageless method to predict the mechanical femoral-tibial angle (mFTA) based on functional determination of joint centres and axes. Gait Posture 31(2):204–208.  https://doi.org/10.1016/j.gaitpost.2009.10.006CrossRefGoogle Scholar
  38. Kratzenstein S, Kornaropoulos EI, Ehrig RM, Heller MO, Popplau BM, Taylor WR (2012) Effective marker placement for functional identification of the centre of rotation at the hip. Gait Posture 36(3):482–486.  https://doi.org/10.1016/j.gaitpost.2012.04.011CrossRefGoogle Scholar
  39. Krauss I, List R, Janssen P, Grau S, Horstmann T, Stacoff A (2012) Comparison of distinctive gait variables using two different biomechanical models for knee joint kinematics in subjects with knee osteoarthritis and healthy controls. Clin Biomech (Bristol, Avon) 27(3):281–286.  https://doi.org/10.1016/j.clinbiomech.2011.09.013CrossRefGoogle Scholar
  40. Leardini A, Cappozzo A, Catani F, Toksvig-Larsen S, Petitto A, Sforza V, Cassanelli G, Giannini S (1999) Validation of a functional method for the estimation of hip joint centre location. J Biomech 32(1):99–103CrossRefGoogle Scholar
  41. Leardini A, Chiari L, Della Croce U, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21(2):212–225.  https://doi.org/10.1016/j.gaitpost.2004.05.002CrossRefGoogle Scholar
  42. Leardini A, Sawacha Z, Paolini G, Ingrosso S, Nativo R, Benedetti MG (2007) A new anatomically based protocol for gait analysis in children. Gait Posture 26(4):560–571.  https://doi.org/10.1016/j.gaitpost.2006.12.018CrossRefGoogle Scholar
  43. Lucchetti L, Cappozzo A, Cappello A, Della Croce U (1998) Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics. J Biomech 31(11):977–984CrossRefGoogle Scholar
  44. Luiz RR, Szklo M (2005) More than one statistical strategy to assess agreement of quantitative measurements may usefully be reported. J Clin Epidemiol 58(3):215–216.  https://doi.org/10.1016/j.jclinepi.2004.07.007CrossRefGoogle Scholar
  45. Lundberg A, Svensson OK, Nemeth G, Selvik G (1989) The axis of rotation of the ankle joint. J Bone Joint Surg (Br) 71(1):94–99CrossRefGoogle Scholar
  46. Manal K, McClay I, Stanhope S, Richards J, Galinat B (2000) Comparison of surface mounted markers and attachment methods in estimating tibial rotations during walking: an in vivo study. Gait Posture 11(1):38–45CrossRefGoogle Scholar
  47. Manal K, McClay I, Richards J, Galinat B, Stanhope S (2002) Knee moment profiles during walking: errors due to soft tissue movement of the shank and the influence of the reference coordinate system. Gait Posture 15(1):10–17CrossRefGoogle Scholar
  48. Manal K, McClay Davis I, Galinat B, Stanhope S (2003) The accuracy of estimating proximal tibial translation during natural cadence walking: bone vs. skin mounted targets. Clin Biomech (Bristol, Avon) 18(2):126–131CrossRefGoogle Scholar
  49. McGinley JL, Baker R, Wolfe R, Morris ME (2009) The reliability of three-dimensional kinematic gait measurements: a systematic review. Gait Posture 29(3):360–369.  https://doi.org/10.1016/j.gaitpost.2008.09.003CrossRefGoogle Scholar
  50. McMulkin ML, Gordon AB (2009) The effect of static standing posture on dynamic walking kinematics: comparison of a thigh wand versus a patella marker. Gait Posture 30(3):375–378.  https://doi.org/10.1016/j.gaitpost.2009.06.010CrossRefGoogle Scholar
  51. Miana AN, Prudencio MV, Barros RM (2009) Comparison of protocols for walking and running kinematics based on skin surface markers and rigid clusters of markers. Int J Sports Med 30(11):827–833.  https://doi.org/10.1055/s-0029-1234054CrossRefGoogle Scholar
  52. Most E, Axe J, Rubash H, Li G (2004) Sensitivity of the knee joint kinematics calculation to selection of flexion axes. J Biomech 37(11):1743–1748.  https://doi.org/10.1016/j.jbiomech.2004.01.025CrossRefGoogle Scholar
  53. Noonan KJ, Halliday S, Browne R, O’Brien S, Kayes K, Feinberg J (2003) Interobserver variability of gait analysis in patients with cerebral palsy. J Pediatr Orthop 23(3):279–287 discussion 288-291Google Scholar
  54. Perry J, Burnfield JM (2010) Gait Analysis. Normal and pathological function, 2nd edn. SLACK Incorporated, ThorofareGoogle Scholar
  55. Piazza SJ, Cavanagh PR (2000) Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment. J Biomech 33(8):1029–1034CrossRefGoogle Scholar
  56. Reinschmidt C, van den Bogert AJ, Lundberg A, Nigg BM, Murphy N, Stacoff A, Stano A (1997a) Tibiofemoral and tibiocalcaneal motion during walking: external vs. skeletal markers. Gait Posture 6(2):98–109.  https://doi.org/10.1016/S0966-6362(97)01110-7CrossRefGoogle Scholar
  57. Reinschmidt C, van den Bogert AJ, Nigg BM, Lundberg A, Murphy N (1997b) Effect of skin movement on the analysis of skeletal knee joint motion during running. J Biomech 30(7):729–732CrossRefGoogle Scholar
  58. Richards J (2008) Biomechanics in clinic and research. Elsevier, PhiladelphiaGoogle Scholar
  59. Sandau M, Heimburger RV, Villa C, Jensen KE, Moeslund TB, Aanaes H, Alkjaer T, Simonsen EB (2015) New equations to calculate 3D joint centres in the lower extremities. Med Eng Phys 37(10):948–955.  https://doi.org/10.1016/j.medengphy.2015.07.001CrossRefGoogle Scholar
  60. Sangeux M, Peters A, Baker R (2011) Hip joint centre localization: evaluation on normal subjects in the context of gait analysis. Gait Posture 34(3):324–328.  https://doi.org/10.1016/j.gaitpost.2011.05.019CrossRefGoogle Scholar
  61. Schache AG, Baker R, Lamoreux LW (2008) Influence of thigh cluster configuration on the estimation of hip axial rotation. Gait Posture 27(1):60–69.  https://doi.org/10.1016/j.gaitpost.2007.01.002CrossRefGoogle Scholar
  62. Schulz BW, Kimmel WL (2010) Can hip and knee kinematics be improved by eliminating thigh markers? Clin Biomech (Bristol, Avon) 25(7):687–692.  https://doi.org/10.1016/j.clinbiomech.2010.04.002CrossRefGoogle Scholar
  63. Schwartz MH, Rozumalski A (2005) A new method for estimating joint parameters from motion data. J Biomech 38(1):107–116.  https://doi.org/10.1016/j.jbiomech.2004.03.009CrossRefGoogle Scholar
  64. Schwartz MH, Trost JP, Wervey RA (2004) Measurement and management of errors in quantitative gait data. Gait Posture 20(2):196–203.  https://doi.org/10.1016/j.gaitpost.2003.09.011CrossRefGoogle Scholar
  65. Serfling DM, Hooke AW, Bernhardt KA, Kaufman KR, 2009 Comparison of techniques for finding the knee joint center. In: Proceedings of the gait and clinical movement analysis society. p 43Google Scholar
  66. Stagni R, Fantozzi S, Cappello A, Leardini A (2005) Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: a study on two subjects. Clin Biomech (Bristol, Avon) 20(3):320–329.  https://doi.org/10.1016/j.clinbiomech.2004.11.012CrossRefGoogle Scholar
  67. Stief F, Bohm H, Michel K, Schwirtz A, Doderlein L (2013) Reliability and accuracy in three-dimensional gait analysis: a comparison of two lower body protocols. J Appl Biomech 29(1):105–111CrossRefGoogle Scholar
  68. Szczerbik E, Kalinowska M (2011) The influence of knee marker placement error on evaluation of gait kinematic parameters. Acta Bioeng Biomech 13(3):43–46Google Scholar
  69. Taylor WR, Ehrig RM, Duda GN, Schell H, Seebeck P, Heller MO (2005) On the influence of soft tissue coverage in the determination of bone kinematics using skin markers. J Orthop Res 23(4):726–734.  https://doi.org/10.1016/j.orthres.2005.02.006CrossRefGoogle Scholar
  70. Taylor WR, Kornaropoulos EI, Duda GN, Kratzenstein S, Ehrig RM, Arampatzis A, Heller MO (2010) Repeatability and reproducibility of OSSCA, a functional approach for assessing the kinematics of the lower limb. Gait Posture 32(2):231–236.  https://doi.org/10.1016/j.gaitpost.2010.05.005CrossRefGoogle Scholar
  71. Vaughan CL, Davis BL, O’Conner JC (1992) Dynamics of human gait. Human Kinetics Publishers, ChampaignGoogle Scholar
  72. Weidow J, Tranberg R, Saari T, Karrholm J (2006) Hip and knee joint rotations differ between patients with medial and lateral knee osteoarthritis: gait analysis of 30 patients and 15 controls. J Orthop Res 24(9):1890–1899.  https://doi.org/10.1002/jor.20194CrossRefGoogle Scholar
  73. Wren TA, Do KP, Hara R, Rethlefsen SA (2008) Use of a patella marker to improve tracking of dynamic hip rotation range of motion. Gait Posture 27(3):530–534.  https://doi.org/10.1016/j.gaitpost.2007.07.006CrossRefGoogle Scholar
  74. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech 35(4):543–548CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Movement Analysis LabOrthopedic University Hospital Friedrichsheim gGmbHFrankfurt/MainGermany

Section editors and affiliations

  • Sebastian I. Wolf
    • 1
  1. 1.Movement Analysis LaboratoryClinic for Orthopedics and Trauma Surgery; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury;Heidelberg University HospitalHeidelbergGermany

Personalised recommendations