The Conventional Gait Model - Success and Limitations

  • Richard Baker
  • Fabien Leboeuf
  • Julie Reay
  • Morgan Sangeux
Reference work entry

Abstract

The Conventional Gait Model (CGM) is a generic name for a family of closely related and very widely used biomechanical models for gait analysis. After describing its history, the core attributes of the model are described followed by evaluation of its strengths and weaknesses. An analysis of the current and future requirements for practical biomechanical models for clinical and other gait analysis purposes which have been rigorously calibrated suggests that the CGM is better suited for this purpose than any other currently available model. Modifications are required, however, and a number are proposed.

Keywords

Clinical Gait Analysis Biomechanical Modeling 

References

  1. Akbarshahi M, Schache AG, Fernandez JW, Baker R, Banks S, Pandy MG (2010) Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. J Biomech 43(7):1292–1301.  https://doi.org/10.1016/j.jbiomech.2010.01.002CrossRefGoogle Scholar
  2. Baker R (2001) Pelvic angles: a mathematically rigorous definition which is consistent with a conventional clinical understanding of the terms. Gait Posture 13(1):1–6.  https://doi.org/10.1016/S0966-6362(00)00083-7CrossRefGoogle Scholar
  3. Baker R (2011) Globographic visualisation of three dimensional joint angles. J Biomech 44(10):1885–1891.  https://doi.org/10.1016/j.jbiomech.2011.04.031CrossRefGoogle Scholar
  4. Baker R, Finney L, Orr J (1999) A new approach to determine the hip rotations profile from clinical gait analysis data. Hum Mov Sci 18:655–667.  https://doi.org/10.1016/S0167-9457(99)00027-5CrossRefGoogle Scholar
  5. Barre A, Thiran JP, Jolles BM, Theumann N, Aminian K (2013) Soft tissue artifact assessment during treadmill walking in subjects with total knee arthroplasty. IEEE Trans Biomed Eng 60(11):3131–3140.  https://doi.org/10.1109/TBME.2013.2268938CrossRefGoogle Scholar
  6. Cappozzo A, Catani F, Croce UD, Leardini A (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech 10(4):171–178.  https://doi.org/10.1016/0268-0033(95)91394-TCrossRefGoogle Scholar
  7. Carson MC, Harrington ME, Thompson N, O’Connor JJ, Theologis TN (2001) Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis. J Biomech 34(10):1299–1307.  https://doi.org/10.1016/S0021-9290(01)00101-4CrossRefGoogle Scholar
  8. Chao EY (1980) Justification of triaxial goniometer for the measurement of joint rotation. J Biomech 13:989–1006.  https://doi.org/10.1016/0021-9290(80)90044-5CrossRefGoogle Scholar
  9. Charlton IW, Tate P, Smyth P, Roren L (2004) Repeatability of an optimised lower body model. Gait Posture 20(2):213–221.  https://doi.org/10.1016/j.gaitpost.2003.09.004CrossRefGoogle Scholar
  10. Clauser C, McConville J, Young J (1969) Weight volume and centre of mass of segments of the human body (AMRL Technical Report). Wright-Patterson Air Force Base, OhioCrossRefGoogle Scholar
  11. Davis RB, Ounpuu S, Tyburski D, Gage J (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10:575–587.  https://doi.org/10.1016/0167-9457(91)90046-ZCrossRefGoogle Scholar
  12. Dempster W (1955) Space requirements of the seated operator (WADC Technical Report :55–159). Wright-Patterson Airforce Base, OhioGoogle Scholar
  13. Eames M, Cosgrove A, Baker R (1999) Comparing methods of estimating the total body centre of mass in three-dimensions in normal and pathological gait. Hum Mov Sci 18:637–646.  https://doi.org/10.1016/S0167-9457(99)00022-6CrossRefGoogle Scholar
  14. Foti T, Davis RB, Davids JR, Farrell ME (2001) Assessment of methods to describe the angular position of the pelvis during gait in children with hemiplegic cerebral palsy. Gait Posture 13:270Google Scholar
  15. Harrington ME, Zavatsky AB, Lawson SE, Yuan Z, Theologis TN (2007) Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging. J Biomech 40(3):595–602.  https://doi.org/10.1016/j.jbiomech.2006.02.003CrossRefGoogle Scholar
  16. Hicks JL, Richards JG (2005) Clinical applicability of using spherical fitting to find hip joint centers. Gait Posture 22(2):138–145.  https://doi.org/10.1016/j.gaitpost.2004.08.004CrossRefGoogle Scholar
  17. Hinrichs RN (1985) Regression equations to predict segmental moments of inertia from anthropometric measurements: an extension of the data of Chandler et al. (1975). J Biomech 18(8):621–624.  https://doi.org/10.1016/0021-9290(85)90016-8CrossRefGoogle Scholar
  18. Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV (1989) Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res 7(6):849–860.  https://doi.org/10.1002/jor.1100070611CrossRefGoogle Scholar
  19. Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8(3):383–392.  https://doi.org/10.1002/jor.1100080310CrossRefGoogle Scholar
  20. Leardini A, Cappozzo A, Catani F, Toksvig-Larsen S, Petitto A, Sforza V, Cassanelli G, Giannini S (1999) Validation of a functional method for the estimation of hip joint centre location. J Biomech 32(1):99–103.  https://doi.org/10.1016/S0021-9290(98)00148-1CrossRefGoogle Scholar
  21. Leardini A, Chiari L, Della Croce U, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21(2):212–225.  https://doi.org/10.1016/j.gaitpost.2004.05.002CrossRefGoogle Scholar
  22. Leardini A, Sawacha Z, Paolini G, Ingrosso S, Nativo R, Benedetti MG (2007) A new anatomically based protocol for gait analysis in children. Gait Posture 26(4):560–571.  https://doi.org/10.1016/j.gaitpost.2006.12.018CrossRefGoogle Scholar
  23. Lu TW, O’Connor JJ (1999) Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J Biomech 32(2):129–134.  https://doi.org/10.1016/S0021-9290(98)00158-4CrossRefGoogle Scholar
  24. McGinley JL, Baker R, Wolfe R, Morris ME (2009) The reliability of three-dimensional kinematic gait measurements: a systematic review. Gait Posture 29(3):360–369.  https://doi.org/10.1016/j.gaitpost.2008.09.003CrossRefGoogle Scholar
  25. Ounpuu S, Gage J, Davis R (1991) Three-dimensional lower extremity joint kinetics in normal pediatric gait. J Pediatr Orthop 11:341–349CrossRefGoogle Scholar
  26. Ounpuu O, Davis R, Deluca P (1996) Joint kinetics: methods, interpretation and treatment decision-making in children with cerebral palsy and myelomeningocele. Gait Posture 4:62–78.  https://doi.org/10.1016/0966-6362(95)01044-0CrossRefGoogle Scholar
  27. Passmore E, Sangeux M (2016) Defining the medial-lateral axis of an anatomical femur coordinate system using freehand 3D ultrasound imaging. Gait Posture 45:211–216.  https://doi.org/10.1016/j.gaitpost.2016.02.006CrossRefGoogle Scholar
  28. Pearsall DJ, Costigan PA (1999) The effect of segment parameter error on gait analysis results. Gait Posture 9(3):173–183CrossRefGoogle Scholar
  29. Peters A, Sangeux M, Morris ME, Baker R (2009) Determination of the optimal locations of surface-mounted markers on the tibial segment. Gait Posture 29(1):42–48.  https://doi.org/10.1016/j.gaitpost.2008.06.007CrossRefGoogle Scholar
  30. Peters A, Baker R, Sangeux M (2010) Validation of 3-D freehand ultrasound for the determination of the hip joint centre. Gait Posture 31:530–532.  https://doi.org/10.1016/j.gaitpost.2010.01.014CrossRefGoogle Scholar
  31. Peters A, Baker R, Morris ME, Sangeux M (2012) A comparison of hip joint centre localisation techniques with 3-DUS for clinical gait analysis in children with cerebral palsy. Gait Posture 36(2):282–286.  https://doi.org/10.1016/j.gaitpost.2012.03.011CrossRefGoogle Scholar
  32. Pillet H, Sangeux M, Hausselle J, El Rachkidi R, Skalli W (2014) A reference method for the evaluation of femoral head joint center location technique based on external markers. Gait Posture 39(1):655–658.  https://doi.org/10.1016/j.gaitpost.2013.08.020CrossRefGoogle Scholar
  33. Pinzone O, Schwartz MH, Thomason P, Baker R (2014) The comparison of normative reference data from different gait analysis services. Gait Posture 40(2):286–290.  https://doi.org/10.1016/j.gaitpost.2014.03.185CrossRefGoogle Scholar
  34. Rao G, Amarantini D, Berton E, Favier D (2006) Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait. J Biomech 39(8):1531–1536.  https://doi.org/10.1016/j.jbiomech.2005.04.014CrossRefGoogle Scholar
  35. Reinbolt JA, Haftka RT, Chmielewski TL, Fregly BJ (2007) Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait? IEEE Trans Biomed Eng 54(5):782–793.  https://doi.org/10.1109/TBME.2006.889187CrossRefGoogle Scholar
  36. Sangeux M, Peters A, Baker R (2011) Hip joint centre localization: Evaluation on normal subjects in the context of gait analysis. Gait Posture 34(3):324–328.  https://doi.org/10.1016/j.gaitpost.2011.05.019CrossRefGoogle Scholar
  37. Sangeux M, Pillet H, Skalli W (2014) Which method of hip joint centre localisation should be used in gait analysis? Gait Posture 40(1):20–25.  https://doi.org/10.1016/j.gaitpost.2014.01.024CrossRefGoogle Scholar
  38. Sauret C, Pillet H, Skalli W, Sangeux M (2016) On the use of knee functional calibration to determine the medio-lateral axis of the femur in gait analysis: Comparison with EOS biplanar radiographs as reference. Gait Posture 50:180–184.  https://doi.org/10.1016/j.gaitpost.2016.09.008CrossRefGoogle Scholar
  39. Scally G, Donaldson L (1998) Clinical governance and the drive for quality improvement in the new NHS in England. Br Med J 317:61–65.  https://doi.org/10.1136/bmj.317.7150.61CrossRefGoogle Scholar
  40. Schwartz MH, Rozumalski A (2005) A new method for estimating joint parameters from motion data. J Biomech 38(1):107–116.  https://doi.org/10.1016/j.jbiomech.2004.03.009CrossRefGoogle Scholar
  41. Seth A, Sherman M, Reinbolt JA, Delp SL (2011) OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. Procedia IUTAM 2:212–232.  https://doi.org/10.1016/j.piutam.2011.04.021CrossRefGoogle Scholar
  42. Shoemaker P (1978) Measurements of relative lower body segment positions in gait analysis. University of California, San DiegoGoogle Scholar
  43. Sutherland D, Hagy J (1972) Measurement of gait movements from motion picture film. J Bone Joint Surg 54A(4):787–797CrossRefGoogle Scholar
  44. Tsai T-Y, Lu T-W, Kuo M-Y, Hsu H-C (2009) Quantification of three-dimensional movement of skin markers realtive to the underlying bones during functional activities. Biomed Eng: Appl Basis Commun 21(3):223–232.  https://doi.org/10.4015/S1016237209001283Google Scholar
  45. Winter D, Robertson D (1978) Joint torque and energy patterns in normal gait. Biol Cybern 29:137–142.  https://doi.org/10.1007/BF00337349CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Richard Baker
    • 1
  • Fabien Leboeuf
    • 2
  • Julie Reay
    • 2
  • Morgan Sangeux
    • 3
    • 4
  1. 1.University of SalfordSalfordUK
  2. 2.School of Health SciencesUniversity of SalfordSalfordUK
  3. 3.Hugh Williamson Gait Analysis LaboratoryThe Royal Children’s HospitalParkville/MelbourneAustralia
  4. 4.Gait laboratory and OrthopaedicsThe Murdoch Childrens Research InstituteParkville/MelbourneAustralia

Section editors and affiliations

  • Sebastian I. Wolf
    • 1
  1. 1.Movement Analysis LaboratoryClinic for Orthopedics and Trauma Surgery; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury;Heidelberg University HospitalHeidelbergGermany

Personalised recommendations