Advertisement

Gait Symmetry Measures and Their Relevance to Gait Retraining

  • Silvia Cabral
Reference work entry

Abstract

A symmetric gait pattern for humans is characterized by the almost identical behavior of bilateral limbs during a gait cycle. This symmetry is usually compromised in pathological gait due to the presence of pain, or as a consequence of an underlying impairment. Over time, the persistence of an asymmetric gait pattern may predispose patients to the development of other musculoskeletal problems. Based on this premise, research has been conducted to confirm the existence of gait asymmetry in various clinical populations and to assess the efficacy and feasibility of gait retraining programs to restore gait symmetry. This chapter explores conventional measures of symmetry, discussing their strengths and limitations in the context of intersession agreement and reliability, sensitivity to changing levels of gait symmetry, and relevance for gait retraining.

Keywords

Symmetry Gait analysis Gait retraining Gait index Symmetry index Repeatability Reliability 

References

  1. Allen JL, Kautz SA, Neptune RR (2011) Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking. Gait Posture 33(4):538–543CrossRefGoogle Scholar
  2. Baker R et al (2009) The gait profile score and movement analysis profile. Gait Posture 30(3):265–269MathSciNetCrossRefGoogle Scholar
  3. Barton GJ et al (2015) A gait index may underestimate changes of gait: a comparison of the movement deviation profile and the gait deviation index. Comput Methods Biomech Biomed Engin 18(1):57–63CrossRefGoogle Scholar
  4. Błażkiewicz M, Wiszomirska I, Wit A (2014) Comparison of four methods of calculating the symmetry of spatial-temporal parameters of gait. Acta Bioeng Biomech 16(1):29–35Google Scholar
  5. Briem K, Snyder-Mackler L (2009) Proximal gait adaptations in medial knee OA. J Orthop Res 27(1):78–83CrossRefGoogle Scholar
  6. Cabral S, Fernandes R et al (2016a) Inter-session agreement and reliability of the global gait asymmetry index in healthy adults. Gait Posture 51:20–24CrossRefGoogle Scholar
  7. Cabral S, Resende RA et al (2016b) A global gait asymmetry index. J Appl Biomech 32(2):171–177CrossRefGoogle Scholar
  8. Cabral S et al (2017a) Concordância e fiabilidade de índices globais de simetria – influência da fórmula matemática. In: 7o Congresso Nacional de Biomecânica. PortugalGoogle Scholar
  9. Cabral S et al (2017b) The impact of the biomechanical parameters on the intersession agreement and reliability of global gait symmetry indices. In: 26th Congress of the International Society of Biomechanics. AustraliaGoogle Scholar
  10. Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)? -arguments against avoiding RMSE in the literature. Geosci Model Dev 7(3):1247–1250CrossRefGoogle Scholar
  11. Christiansen CL, Stevens-Lapsley JE (2010) Weight-bearing asymmetry in relation to measures of impairment and functional mobility for people with knee osteoarthritis. Arch Phys Med Rehabil 91(10):1524–1528CrossRefGoogle Scholar
  12. Collins TD et al (2009) A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set. Gait Posture 30(2):173–180CrossRefGoogle Scholar
  13. Crenshaw SJ, Richards JG (2006) A method for analyzing joint symmetry and normalcy, with an application to analyzing gait. Gait Posture 24(4):515–521CrossRefGoogle Scholar
  14. Della Croce U, Cappozzo A, Kerrigan DC (1999) Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles. Med Biol Eng Comput 37(2):155–161CrossRefGoogle Scholar
  15. Della Croce U et al (2005) Human movement analysis using stereophotogrammetry part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture 21:226–237CrossRefGoogle Scholar
  16. Deluzio KJ, Astephen JL (2007) Biomechanical features of gait waveform data associated with knee osteoarthritis: an application of principal component analysis. Gait Posture 25(1):86–93CrossRefGoogle Scholar
  17. Devan H et al (2015) Spinal, pelvic, and hip movement asymmetries in people with lower-limb amputation: systematic review. J Rehabil Res Dev 52(1):1–20CrossRefGoogle Scholar
  18. Dingwell JB, Davis BL, Frazier DM (1996) Use of an instrumented treadmill for real-time gait symmetry evaluation and feedback in normal and trans-tibial amputee subjects. Prosthetics Orthot Int 20(2):101–110Google Scholar
  19. Fernandes R et al (2016) Three dimensional multi-segmental trunk kinematics and kinetics during gait: test-retest reliability and minimal detectable change. Gait Posture 46:18–25CrossRefGoogle Scholar
  20. Gurney B (2002) Leg length discrepancy. Gait Posture 15(2):195–206CrossRefGoogle Scholar
  21. Haddad JM et al (2010) Relative phase coordination analysis in the assessment of dynamic gait symmetry. J Appl Biomech 26(1):109–113CrossRefGoogle Scholar
  22. Herzog W et al (1989) Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc 21(1):110–114CrossRefGoogle Scholar
  23. Hoerzer S et al (2012) A novel methodology using principal component analysis to quantify global bilateral asymmetry of human gait. In: American Society of Biomechanics 36th Annual Meeting, pp. 2–3Google Scholar
  24. Hoerzer S et al (2015) Footwear decreases gait asymmetry during running. Plos One 10(10):e0138631CrossRefGoogle Scholar
  25. Hsiao-Wecksler ET et al (2010) A review of new analytic techniques for quantifying symmetry in locomotion. Symmetry 2(2):1135–1155CrossRefGoogle Scholar
  26. Jorgensen L et al (2000) Ambulatory level and asymmetrical weight bearing after stroke affects bone loss in the upper and lower part of the femoral neck differently: bone adaptation after decreased mechanical loading. Bone 27(5):701–707CrossRefGoogle Scholar
  27. Kaufman K, Miller L, Sutherland D (1996) Gait asymmetry in patients with limb-length inequality. J Pediatr Orthop 16(2):144–150CrossRefGoogle Scholar
  28. Lewek MD, Randall EP (2011) Reliability of spatiotemporal asymmetry during overground walking for individuals following chronic stroke. Journal of neurologic physical therapy: JNPT 35(3):116–121CrossRefGoogle Scholar
  29. Lewek MD et al (2012) Use of visual and proprioceptive feedback to improve gait speed and spatiotemporal symmetry following chronic stroke - a case series. Phys Ther 92(5):748–756CrossRefGoogle Scholar
  30. Liu XC et al (1998) Kinematic and kinetic asymmetry in patients with leg-length discrepancy. J Pediatr Orthop 18(2):187–189MathSciNetGoogle Scholar
  31. Lundh D, Coleman S, Riad J (2014) Movement deviation and asymmetry assessment with three dimensional gait analysis of both upper- and lower extremity results in four different clinical relevant subgroups in unilateral cerebral palsy. Clin Biomech 29(4):381–386CrossRefGoogle Scholar
  32. Maxwell JP, Masters RS, Eves FF (2000) From novice to no know-how - a longitudinal study of implicit motor learning. J Sports Sci 18(2):111–120CrossRefGoogle Scholar
  33. McGinley JL et al (2009) The reliability of three-dimensional kinematic gait measurements: a systematic review. Gait Posture 29(3):360–369CrossRefGoogle Scholar
  34. Michalak J, Rohde K, Troje NF (2015) How we walk affects what we remember: gait modifications through biofeedback change negative affective memory bias. J Behav Ther Exp Psychiatry 46:121–125CrossRefGoogle Scholar
  35. Mills K et al (2013) Between-limb kinematic asymmetry during gait in unilateral and bilateral mild to moderate knee osteoarthritis. Arch Phys Med Rehabil 94(11):2241–2247CrossRefGoogle Scholar
  36. Nigg S et al (2013) Development of a symmetry index using discrete variables. Gait Posture 38(1):115–119CrossRefGoogle Scholar
  37. Nolan L et al (2003) Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture 17(2):142–151CrossRefGoogle Scholar
  38. Nunnaly JC (1978) Psychometric theory, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  39. Patterson KK et al (2008) Gait asymmetry in community-ambulating stroke survivors. Arch Phys Med Rehabil 89(2):304–310CrossRefGoogle Scholar
  40. Patterson KK et al (2010) Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization. Gait Posture 31(2):241–246CrossRefGoogle Scholar
  41. Plotnik M, Giladi N, Hausdorff JM (2007) A new measure for quantifying the bilateral coordination of human gait: effects of aging and Parkinson’s disease. Exp Brain Res 181(4):561–570CrossRefGoogle Scholar
  42. Reisman D et al (2013) Repeated split-belt treadmill training improves poststroke step length asymmetry. Neurorehabil Neural Repair 27(5):460–468CrossRefGoogle Scholar
  43. Robinson R, Herzog W, Nigg B (1987) Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J Manip Physiol Ther 10(4):172–176Google Scholar
  44. Roerdink M et al (2012) Evaluating asymmetry in prosthetic gait with step-length asymmetry alone is flawed. Gait Posture 35(3):446–451CrossRefGoogle Scholar
  45. Sadeghi H et al (2000) Symmetry and limb dominance in able-bodied gait: a review. Gait Posture 12(1):34–45CrossRefGoogle Scholar
  46. Schwartz MH, Trost JP, Wervey R a (2004) Measurement and management of errors in quantitative gait data. Gait Posture 20(2):196–203CrossRefGoogle Scholar
  47. Senden R et al (2009) Acceleration-based gait test for healthy subjects: reliability and reference data. Gait Posture 30(2):192–196CrossRefGoogle Scholar
  48. Shakoor N et al (2002) Nonrandom evolution of end-stage osteoarthritis of the lower limbs. Arthritis Rheum 46(12):3185–3189CrossRefGoogle Scholar
  49. Shakoor N et al (2011) Asymmetric loading and bone mineral density at the asymptomatic knees of patients with unilateral hip osteoarthritis. Arthritis Rheum 63(12):3853–3858CrossRefGoogle Scholar
  50. Shorter KA et al (2008) A new approach to detecting asymmetries in gait. Clin Biomech 23(4):459–467CrossRefGoogle Scholar
  51. Sigal L, Balan A, Black M (2010) HUMANEVA: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int J Comput Vis 87(1):324–344Google Scholar
  52. Troje NF (2002) Decomposing biological motion - a framework for analysis and synthesis of human gait patterns. J Vis 2(5):371–387CrossRefGoogle Scholar
  53. Tsai T et al (2015) Asymmetric hip kinematics during gait in patients with unilateral total hip arthroplasty: In vivo 3-dimensional motion analysis. Journal of Biomechanics 48(4):555–559CrossRefGoogle Scholar
  54. Turcot K et al (2015) Multi-joint postural behavior in patients with knee osteoarthritis. Knee 22(6):1–5CrossRefGoogle Scholar
  55. Vagenas G, Hoshizaki TB (1989) Ground reaction force asymmetries of normal human gait. Med Sci Sports Exerc 21(5):625–626CrossRefGoogle Scholar
  56. de Vet HC et al (2006) When to use agreement versus reliability measures. J Clin Epidemiol 59:1033–1039CrossRefGoogle Scholar
  57. White SC, Lifeso RM (2005) Altering asymmetric limb loading after hip arthroplasty using real-time dynamic feedback when walking. Arch Phys Med Rehabil 86(10):1958–1963CrossRefGoogle Scholar
  58. Winiarski S, Czamara A (2012) Evaluation of gait kinematics and symmetry during the first two stages of physiotherapy after anterior cruciate ligament reconstruction. Acta Bioeng Biomech 14(2):91–100Google Scholar
  59. Wulf G, Shea CH (2002) Principles derived from the study of simple skills do not generalize to complex skill learning. Psychon Bull Rev 9(2):185–211CrossRefGoogle Scholar
  60. Zifchock RA, Davis I (2008) Non-consecutive versus consecutive footstrikes as an equivalent method of assessing gait asymmetry. J Biomech 41(1):226–230CrossRefGoogle Scholar
  61. Zifchock RA et al (2008) The symmetry angle: a novel, robust method of quantifying asymmetry. Gait Posture 27(4):622–627CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratório de Biomecânica e Morfologia Funcional, CIPER, Faculdade de Motricidade HumanaUniversidade de LisboaCruz Quebrada, DafundoPortugal

Section editors and affiliations

  • William Scott Selbie
    • 1
  1. 1.Has-Motion Inc.KingstonCanada

Personalised recommendations