Advertisement

Cross-Platform Comparison of Imaging Technologies for Measuring Musculoskeletal Motion

  • Richard M. Smith
  • Frances T. Sheehan
Reference work entry

Abstract

Human movement is integral to daily life, it defines our species (the ability to walk upright and manipulate objects using an opposable thumb), and it is central to our ability to interact with our environment. As such, the study of human motion is dually important in our ability to optimize human functional ability. It provides a platform for understanding how pathology or injury affects human motion, so that we can both prevent and treat such pathologies. The earliest studies of human motion were mainly observational to qualify types of movements, while the current discipline and subdisciplines of human movement studies aim to quantify musculoskeletal kinematics, at times with submillimeter accuracy.

The aim of this chapter is to discuss invasive and noninvasive methodologies for studying human motion with a focus on the reported accuracies, advantages, and limitations for each technique. Accuracies are presented throughout this chapter if they were reported as maximum average absolute or root mean squared errors for accuracy data for translational (in millimeters) and rotational data (in degrees) in order to simplify the reporting of cumulative accuracies from relevant articles. Thus, this review will highlight the current state of each methodology, as a platform for future investigators to build on these technologies.

Keywords

Validation Accuracy Magnetic resonance imaging MRI Cine MRI Cine phase contrast CPC motion capture Fluoroscopy Single-plane videoradiography Biplane videoradiography Ultrasound Muscle Skeletal Musculoskeletal Computed Tomography CT Motion capture Optoelectronic tracking system OTS Pose estimation 

Notes

Acknowledgments

We thank Judith Welsh for her help and support toward this project. This work was funded by the Intramural Research Program of the National Institutes of Health Clinical Center, Bethesda, MD, USA. This research was also made possible through the NIH Medical Research Scholars Program, a public-private partnership (http://fnih.org).

References

  1. Abernethy B (2013) Historical origins of the academic study of human movement. In: Abernethy B, Kippers V, Stephanie HJ, Pandy MG, McManus AM, Mackinnon L (eds) Biophysical foundations of human movement. Human Kinetics, Champaign, pp 13–23Google Scholar
  2. Anderst W, Zauel R, Bishop J, Demps E, Tashman S (2009) Validation of three-dimensional model-based tibio-femoral tracking during running. Med Eng Phys 31(1):10–16.  https://doi.org/10.1016/j.medengphy.2008.03.003CrossRefGoogle Scholar
  3. Asakawa DS, Nayak KS, Blemker SS, Delp SL, Pauly JM, Nishimura DG, Gold GE (2003) Real-time imaging of skeletal muscle velocity. J Magn Reson Imaging: JMRI 18(6):734–739.  https://doi.org/10.1002/jmri.10422CrossRefGoogle Scholar
  4. Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 43(6):638–649.  https://doi.org/10.1109/10.495283CrossRefGoogle Scholar
  5. Barrance PJ, Williams GN, Novotny JE, Buchanan TS (2005) J Biomech Eng 127(5):829–837CrossRefGoogle Scholar
  6. Behnam AJ, Herzka DA, Sheehan FT (2011) Assessing the accuracy and precision of musculoskeletal motion tracking using cine-PC MRI on a 3.0T platform. J Biomech 44(1):193–197.  https://doi.org/10.1016/j.jbiomech.2010.08.029CrossRefGoogle Scholar
  7. Bey MJ, Zauel R, Brock SK, Tashman S (2006) Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng 128(4):604–609.  https://doi.org/10.1115/1.2206199CrossRefGoogle Scholar
  8. Bey MJ, Kline SK, Tashman S, Zauel R (2008) Accuracy of biplane x-ray imaging combined with model-based tracking for measuring in-vivo patellofemoral joint motion. J Orthop Surg Res 3:38.  https://doi.org/10.1186/1749-799x-3-38CrossRefGoogle Scholar
  9. Biswas D, Bible JE, Bohan M, Simpson AK, Whang PG, Grauer JN (2009) Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am 91(8):1882–1889CrossRefGoogle Scholar
  10. Boden BP, Breit I, Sheehan FT (2009) Tibiofemoral alignment: contributing factors to noncontact anterior cruciate ligament injury. J Bone Joint Surg Am 91(10):2381–2389.  https://doi.org/10.2106/JBJS.H.01721CrossRefGoogle Scholar
  11. Bohannon RW, Williams Andrews A (2011) Normal walking speed: a descriptive meta-analysis. Physiotherapy 97(3):182–189.  https://doi.org/10.1016/j.physio.2010.12.004CrossRefGoogle Scholar
  12. Borotikar BS, Sipprell WH 3rd, Wible EE, Sheehan FT (2012) A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data. J Biomech 45(6):1117–1122CrossRefGoogle Scholar
  13. Braekken IH, Majida M, Ellstrom-Engh M, Dietz HP, Umek W, Bo K (2008) Test-retest and intra-observer repeatability of two-, three- and four-dimensional perineal ultrasound of pelvic floor muscle anatomy and function. Int Urogynecol J Pelvic Floor Dysfunct 19(2):227–235.  https://doi.org/10.1007/s00192-007-0408-7CrossRefGoogle Scholar
  14. Brainerd EL, Baier DB, Gatesy SM, Hedrick TL, Metzger KA, Gilbert SL, Crisco JJ (2010) X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative biomechanics research. J Exp Zool A Ecol Genet Physiol 313(5):262–279.  https://doi.org/10.1002/jez.589Google Scholar
  15. Brossmann J, Muhle C, Schroder C, Melchert UH, Bull CC, Spielmann RP, Heller M (1993) Patellar tracking patterns during active and passive knee extension: evaluation with motion-triggered cine MR imaging. Radiology 187(1):205–212.  https://doi.org/10.1148/radiology.187.1.8451415CrossRefGoogle Scholar
  16. de Bruin PW, Kaptein BL, Stoel BC, Reiber JH, Rozing PM, Valstar ER (2008) Image-based RSA: roentgen stereophotogrammetric analysis based on 2D-3D image registration. J Biomech 41(1):155–164.  https://doi.org/10.1016/j.jbiomech.2007.07.002CrossRefGoogle Scholar
  17. Buffi JH, Crisco JJ, Murray WM (2013) A method for defining carpometacarpal joint kinematics from three-dimensional rotations of the metacarpal bones captured in vivo using computed tomography. J Biomech 46(12):2104–2108.  https://doi.org/10.1016/j.jbiomech.2013.05.019CrossRefGoogle Scholar
  18. Burnett KR, Davis CL, Read J (1987) Dynamic display of the temporomandibular joint meniscus by using “fast-scan” MR imaging. AJR Am J Roentgenol 149(5):959–962.  https://doi.org/10.2214/ajr.149.5.959CrossRefGoogle Scholar
  19. Byrne CA, Lyons GM, Donnelly AE, O’Keeffe DT, Hermens H, Nene A (2005) Rectus femoris surface myoelectric signal cross-talk during static contractions. J Electromyogr Kinesiol 15(6):564–575.  https://doi.org/10.1016/j.jelekin.2005.03.002CrossRefGoogle Scholar
  20. Cappozzo A, Paul J (1998) Instrumental observation of human movement: historical development. In: Allard P, Cappozzo A, Lundberg A, Vaughan C (eds) Three-dimensional analysis of human locomotion. New York, NY: Wiley, pp 1–25Google Scholar
  21. Cappozzo A, Catani F, Leardini A, Benedetti MG, Della Croce U (1996) Position and orientation in space of bones during movement: experimental artefacts. Clin Biomech 11(2):90–100.  https://doi.org/10.1016/0268-0033(95)00046-1CrossRefGoogle Scholar
  22. Cerciello T, Romano M, Bifulco P, Cesarelli M, Allen R (2011) Advanced template matching method for estimation of intervertebral kinematics of lumbar spine. Med Eng Phys 33(10):1293–1302.  https://doi.org/10.1016/j.medengphy.2011.06.009CrossRefGoogle Scholar
  23. Cereatti A, Trojaniello D, Croce UD (2015) Accurately measuring human movement using magneto-inertial sensors: techniques and challenges. In: 2015 I.E. international symposium on Inertial Sensors and Systems (ISISS) proceedings, 23–26 March 2015, Hapuna Beach, HI, USA, pp 1–4.  https://doi.org/10.1109/ISISS.2015.7102390
  24. Chao EYS (1980) Justification of triaxial goniometer for the measurement of joint rotation. J Biomech 13(12):989–1006.  https://doi.org/10.1016/0021-9290(80)90044-5CrossRefGoogle Scholar
  25. Chiari L, Della Croce U, Leardini A, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 2: instrumental errors. Gait Posture 21(2):197–211.  https://doi.org/10.1016/j.gaitpost.2004.04.004CrossRefGoogle Scholar
  26. Crabolu M, Pani D, Raffo L, Cereatti A (2016) Estimation of the center of rotation using wearable magneto-inertial sensors. J Biomech 49(16):3928–3933.  https://doi.org/10.1016/j.jbiomech.2016.11.046CrossRefGoogle Scholar
  27. Dal Maso F, Raison M, Lundberg A, Arndt A, Begon M (2014) Coupling between 3D displacements and rotations at the glenohumeral joint during dynamic tasks in healthy participants. Clin Biomech (Bristol, Avon) 29(9):1048–1055.  https://doi.org/10.1016/j.clinbiomech.2014.08.006CrossRefGoogle Scholar
  28. Dal Maso F, Blache Y, Raison M, Lundberg A, Begon M (2016) Glenohumeral joint kinematics measured by intracortical pins, reflective markers, and computed tomography: a novel technique to assess acromiohumeral distance. J Electromyogr Kinesiol 29:4–11.  https://doi.org/10.1016/j.jelekin.2015.07.008CrossRefGoogle Scholar
  29. Drace JE, Pelc NJ (1994) Tracking the motion of skeletal muscle with velocity-encoded MR imaging. J Mag Reson Imaging: JMRI 4(6):773–778CrossRefGoogle Scholar
  30. Dupuy D, Hangen D, Zachazewski J, Boland A, Palmer W (1997) Kinematic CT of the patellofemoral joint. AJR Am J Roentgenol 169(1):211–215CrossRefGoogle Scholar
  31. Eberhart HD, Inman VT (1951) An evaluation of experimental procedures used in a fundamental study of human locomotion. Ann N Y Acad Sci 51(7):1213–1228CrossRefGoogle Scholar
  32. Eng CM, Abrams GD, Smallwood LR, Lieber RL, Ward SR (2007) Muscle geometry affects accuracy of forearm volume determination by magnetic resonance imaging (MRI). J Biomech 40(14):3261–3266.  https://doi.org/10.1016/j.jbiomech.2007.04.005CrossRefGoogle Scholar
  33. Fellows R, Hill N, Gill H, MacIntyre N, Harrison M, Ellis R, Wilson D (2005) Magnetic resonance imaging for in vivo assessment of three-dimensional patellar tracking. J Biomech 38(8):1643–1652CrossRefGoogle Scholar
  34. Fernandez JW, Akbarshahi M, Kim HJ, Pandy MG (2008) Integrating modelling, motion capture and x-ray fluoroscopy to investigate patellofemoral function during dynamic activity. Comput Methods in Biomech Biomed Eng 11(1):41–53.  https://doi.org/10.1080/10255840802296814CrossRefGoogle Scholar
  35. Finni T, Hodgson JA, Lai AM, Edgerton VR, Sinha S (2006) Muscle synergism during isometric plantarflexion in achilles tendon rupture patients and in normal subjects revealed by velocity-encoded cine phase-contrast MRI. Clin Biomech (Bristol, Avon) 21(1):67–74.  https://doi.org/10.1016/j.clinbiomech.2005.08.007CrossRefGoogle Scholar
  36. Fischer KJ, Manson TT, Pfaeffle HJ, Tomaino MM, Woo SL (2001) A method for measuring joint kinematics designed for accurate registration of kinematic data to models constructed from CT data. J Biomech 34(3):377–383CrossRefGoogle Scholar
  37. Fox AM, Kedgley AE, Lalone EA, Johnson JA, Athwal GS, Jenkyn TR (2011) The effect of decreasing computed tomography dosage on radiostereometric analysis (RSA) accuracy at the glenohumeral joint. J Biomech 44(16):2847–2850.  https://doi.org/10.1016/j.jbiomech.2011.08.009CrossRefGoogle Scholar
  38. Fregly BJ, Rahman HA, Banks SA (2005) Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy. J Biomech Eng 127(4):692–699CrossRefGoogle Scholar
  39. Gondim Teixeira PA, Formery AS, Hossu G, Winninger D, Batch T, Gervaise A, Blum A (2017) Evidence-based recommendations for musculoskeletal kinematic 4D-CT studies using wide area-detector scanners: a phantom study with cadaveric correlation. Eur Radiol 27(2):437–446.  https://doi.org/10.1007/s00330-016-4362-yCrossRefGoogle Scholar
  40. Goto A, Leng S, Sugamoto K, Cooney WP, Kakar S, Zhao K (2014) In vivo pilot study evaluating the thumb carpometacarpal joint during circumduction. Clin Orthop Relat Res 472(4):1106–1113CrossRefGoogle Scholar
  41. Guan S, Gray HA, Keynejad F, Pandy MG (2016) Mobile biplane X-ray imaging system for measuring 3D dynamic joint motion during overground gait. IEEE Trans Med Imaging 35(1):326–336.  https://doi.org/10.1109/tmi.2015.2473168CrossRefGoogle Scholar
  42. Holden JP, Orsini JA, Siegel KL, Kepple TM, Gerber LH, Stanhope SJ (1997) Surface movement errors in shank kinematics and knee kinetics during gait. Gait Posture 5(3):217–227.  https://doi.org/10.1016/S0966-6362(96)01088-0CrossRefGoogle Scholar
  43. Im HS, Alter KE, Brochard S, Pons C, Sheehan FT (2014) In vivo pediatric shoulder muscle volumes and their relationship to 3D strength. J Biomech 47(11):2730–2737.  https://doi.org/10.1016/j.jbiomech.2014.04.049CrossRefGoogle Scholar
  44. Jan SVS, Salvia P, Hilal I, Sholukha V, Rooze M, Clapworthy G (2002) Registration of 6-DOFs electrogoniometry and CT medical imaging for 3D joint modeling. J Biomech 35(11):1475–1484CrossRefGoogle Scholar
  45. Jensen ER, Morrow DA, Felmlee JP, Odegard GM, Kaufman KR (2015) Error analysis of cine phase contrast MRI velocity measurements used for strain calculation. J Biomech 48(1):95–103.  https://doi.org/10.1016/j.jbiomech.2014.10.035CrossRefGoogle Scholar
  46. Jia R, Mellon S, Monk P, Murray D, Noble JA (2016) A computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system for the description of hip joint kinematics. Int J Comput Assist Radiol Surg 11(11):1965–1977.  https://doi.org/10.1007/s11548-016-1443-yCrossRefGoogle Scholar
  47. Kaiser J, Monawer A, Chaudhary R, Johnson KM, Wieben O, Kijowski R, Thelen DG (2016) Accuracy of model-based tracking of knee kinematics and cartilage contact measured by dynamic volumetric MRI. Med Eng Phys 38(10):1131–1135.  https://doi.org/10.1016/j.medengphy.2016.06.016CrossRefGoogle Scholar
  48. Kalia V, Obray RW, Filice R, Fayad LM, Murphy K, Carrino JA (2009) Functional joint imaging using 256-MDCT: technical feasibility. Am J Roentgenol 192(6):W295–W299CrossRefGoogle Scholar
  49. Karlsson D, Lundberg A (1994) Accuracy estimation of kinematic data derived from bone anchored external markers. In: Proceedings of the 3rd international symposium on 3D analysis of human movement, Stockholm, pp 27–30Google Scholar
  50. Kerkhof FD, Brugman E, D'Agostino P, Dourthe B, van Lenthe GH, Stockmans F, Jonkers I, Vereecke EE (2016) Quantifying thumb opposition kinematics using dynamic computed tomography. J Biomech 49(9):1994–1999.  https://doi.org/10.1016/j.jbiomech.2016.05.008CrossRefGoogle Scholar
  51. Kettelkamp DB, Johnson RJ, Smidt GL, Chao EY, Walker M (1970) An electrogoniometric study of knee motion in normal gait. J Bone Joint Surg Am 52(4):775–790CrossRefGoogle Scholar
  52. Lafortune MA (1984) The use of intra-cortical pins to measure the motion of the knee joint during walking. Doctoral dissertation, Pennsylvania State University, University ParkGoogle Scholar
  53. Lafortune MA, Cavanagh PR, Sommer HJ 3rd, Kalenak A (1992) Three-dimensional kinematics of the human knee during walking. J Biomech 25(4):347–357CrossRefGoogle Scholar
  54. Lafortune MA, Cavanagh PR, Sommer HJ 3rd, Kalenak A (1994) Foot inversion-eversion and knee kinematics during walking. J Orthop Res 12(3):412–420.  https://doi.org/10.1002/jor.1100120314CrossRefGoogle Scholar
  55. Lee S, Kim YS, Park CS, Kim KG, Lee YH, Gong HS, Lee HJ, Baek GH (2014) CT-based three-dimensional kinematic comparison of dart-throwing motion between wrists with malunited distal radius and contralateral normal wrists. Clin Radiol 69(5):462–467.  https://doi.org/10.1016/j.crad.2013.09.023CrossRefGoogle Scholar
  56. Levens AS, Inman VT, Blosser JA (1948) Transverse rotation of the segments of the lower extremity in locomotion. J Bone Joint Surg Am 30a(4):859–872CrossRefGoogle Scholar
  57. Lin CC, Lu TW, Shih TF, Tsai TY, Wang TM, Hsu SJ (2013) Intervertebral anticollision constraints improve out-of-plane translation accuracy of a single-plane fluoroscopy-to-CT registration method for measuring spinal motion. Med Phys 40(3):031912.  https://doi.org/10.1118/1.4792309CrossRefGoogle Scholar
  58. Lippert F, Veress S, Takamoto T, Spolek G (1975) Experimental studies on patellar motion using X-ray photogrammetry. In: Proceedings of symposium on close-range photogrammetric systems, Champaign, IL, USA, pp 186–208Google Scholar
  59. Manal K, McClay I, Stanhope S, Richards J, Galinat B (2000) Comparison of surface mounted markers and attachment methods in estimating tibial rotations during walking: an in vivo study. Gait Posture 11(1):38–45CrossRefGoogle Scholar
  60. Maniere-Ezvan A, Havet T, Franconi JM, Quemar JC, de Certaines JD (1999) Cinematic study of temporomandibular joint motion using ultra-fast magnetic resonance imaging. Cranio J Craniomandibular Prac 17(4):262–267Google Scholar
  61. Materials ASfTa (2010) Standard practice for use of the terms precision and bias in ASTM test methods, vol E177-08. ASTM International, West ConshohockenGoogle Scholar
  62. Meskers CG, Fraterman H, van der Helm FC, Vermeulen HM, Rozing PM (1999) Calibration of the “flock of birds” electromagnetic tracking device and its application in shoulder motion studies. J Biomech 32(6):629–633CrossRefGoogle Scholar
  63. Milne A, Chess D, Johnson J, King G (1996) Accuracy of an electromagnetic tracking device: a study of the optimal operating range and metal interference. J Biomech 29(6):791–793CrossRefGoogle Scholar
  64. Moerman KM, Sprengers AM, Simms CK, Lamerichs RM, Stoker J, Nederveen AJ (2012) Validation of continuously tagged MRI for the measurement of dynamic 3D skeletal muscle tissue deformation. Med Phys 39(4):1793–1810.  https://doi.org/10.1118/1.3685579CrossRefGoogle Scholar
  65. Neptune RR, Hull ML (1995) Accuracy assessment of methods for determining hip movement in seated cycling. J Biomech 28(4):423–437CrossRefGoogle Scholar
  66. Niitsu M, Campeau NG, Holsinger-Bampton AE, Riederer SJ, Ehman RL (1992) Tracking motion with tagged rapid gradient-echo magnetization-prepared MR imaging. J Magn Reson Imaging 2(2):155–163CrossRefGoogle Scholar
  67. Ohnishi T, Suzuki M, Nawata A, Naomoto S, Iwasaki T, Haneishi H (2010) Three-dimensional motion study of femur, tibia, and patella at the knee joint from bi-plane fluoroscopy and CT images. Radiol Phys Technol 3(2):151–158.  https://doi.org/10.1007/s12194-010-0090-1CrossRefGoogle Scholar
  68. Pappas GP, Asakawa DS, Delp SL, Zajac FE, Drace JE (2002) Nonuniform shortening in the biceps brachii during elbow flexion. J Appl Physiol (Bethesda, Md: 1985) 92(6):2381–2389.  https://doi.org/10.1152/japplphysiol.00843.2001CrossRefGoogle Scholar
  69. Pelc LR, Sayre J, Yun K, Castro LJ, Herfkens RJ, Miller DC, Pelc NJ (1994) Evaluation of myocardial motion tracking with cine-phase contrast magnetic resonance imaging. Investig Radiol 29(12):1038–1042CrossRefGoogle Scholar
  70. Pelc NJ, Drangova M, Pelc LR, Zhu Y, Noll DC, Bowman BS, Herfkens RJ (1995) Tracking of cyclic motion with phase-contrast cine MR velocity data. J Magn Reson Imaging 5(3):339–345CrossRefGoogle Scholar
  71. Pipe JG, Boes JL, Chenevert TL (1991) Method for measuring three-dimensional motion with tagged MR imaging. Radiology 181(2):591–595.  https://doi.org/10.1148/radiology.181.2.1924810CrossRefGoogle Scholar
  72. Pulkovski N, Schenk P, Maffiuletti NA, Mannion AF (2008) Tissue Doppler imaging for detecting onset of muscle activity. Muscle Nerve 37(5):638–649.  https://doi.org/10.1002/mus.20996CrossRefGoogle Scholar
  73. Reinschmidt C, van den Bogert AJ, Lundberg A, Nigg BM, Murphy N, Stacoff A, Stano A (1997) Tibiofemoral and tibiocalcaneal motion during walking: external vs. skeletal markers. Gait Posture 6(2):98–109.  https://doi.org/10.1016/S0966-6362(97)01110-7CrossRefGoogle Scholar
  74. Rogers B, Wiese S, Blankenbaker D, Meyerand E, Haughton V (2005) Accuracy of an automated method to measure rotations of vertebrae from computerized tomography data. Spine 30(6):694–696CrossRefGoogle Scholar
  75. Salarian A, Horak FB, Zampieri C, Carlson-Kuhta P, Nutt JG, Aminian K (2010) iTUG, a sensitive and reliable measure of mobility. IEEE Trans Neural Syst Rehabil Eng 18(3):303–310.  https://doi.org/10.1109/tnsre.2010.2047606CrossRefGoogle Scholar
  76. San Juan JG, Karduna AR (2010) Measuring humeral head translation using fluoroscopy: a validation study. J Biomech 43(4):771–774.  https://doi.org/10.1016/j.jbiomech.2009.10.034CrossRefGoogle Scholar
  77. Schutzer SF, Ramsby GR, Fulkerson JP (1986) The evaluation of patellofemoral pain using computerized tomography: a preliminary study. Clin Orthop Relat Res 204:288–293Google Scholar
  78. Sheehan FT, Zajac FE, Drace JE (1998) Using cine phase contrast magnetic resonance imaging to non-invasively study in vivo knee dynamics. J Biomech 31(1):21–26CrossRefGoogle Scholar
  79. Shih YF, Bull AM, McGregor AH, Humphries K, Amis AA (2003) A technique for the measurement of patellar tracking during weight-bearing activities using ultrasound. Proc Inst Mech Eng H J Eng Med 217(6):449–457CrossRefGoogle Scholar
  80. Shih YF, Bull AM, McGregor AH, Amis AA (2004) Active patellar tracking measurement: a novel device using ultrasound. Am J Sports Med 32(5):1209–1217.  https://doi.org/10.1177/0363546503262693CrossRefGoogle Scholar
  81. Simoes MA (2011) Feasibility of wearable sensors to determine Gait parameters. Masters thesis, University of South FloridaGoogle Scholar
  82. Sprengers AM, Caan MW, Moerman KM, Nederveen AJ, Lamerichs RM, Stoker J (2013) A scale space based algorithm for automated segmentation of single shot tagged MRI of shearing deformation. Magma (New York, NY) 26(2):229–238.  https://doi.org/10.1007/s10334-012-0332-9Google Scholar
  83. Tang TS, MacIntyre NJ, Gill HS, Fellows RA, Hill NA, Wilson DR, Ellis RE (2004) Accurate assessment of patellar tracking using fiducial and intensity-based fluoroscopic techniques. Med Image Anal 8(3):343–351.  https://doi.org/10.1016/j.media.2004.06.011CrossRefGoogle Scholar
  84. Tashman S (2008) Comments on “validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion”. J Biomech 41(15):3290–3291.  https://doi.org/10.1016/j.jbiomech.2008.07.038. author reply 3292–3293CrossRefGoogle Scholar
  85. Tashman S, Anderst W (2003) In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. J Biomech Eng 125(2):238–245CrossRefGoogle Scholar
  86. Tat J, Kociolek AM, Keir PJ (2015) Validation of color Doppler sonography for evaluating relative displacement between the flexor tendon and subsynovial connective tissue. J Ultrasound Med 34(4):679–687.  https://doi.org/10.7863/ultra.34.4.679CrossRefGoogle Scholar
  87. Telfer S, Woodburn J, Turner DE (2014) An ultrasound based non-invasive method for the measurement of intrinsic foot kinematics during gait. J Biomech 47(5):1225–1228.  https://doi.org/10.1016/j.jbiomech.2013.12.014CrossRefGoogle Scholar
  88. Thorhauer E, Tashman S (2015) Validation of a method for combining biplanar radiography and magnetic resonance imaging to estimate knee cartilage contact. Med Eng Phys 37(10):937–947.  https://doi.org/10.1016/j.medengphy.2015.07.002CrossRefGoogle Scholar
  89. Todorov E (2007) Probabilistic inference of multijoint movements, skeletal parameters and marker attachments from diverse motion capture data. IEEE Trans Biomed Eng 54(11):1927–1939.  https://doi.org/10.1109/tbme.2007.903521CrossRefGoogle Scholar
  90. Townsend MA, Izak M, Jackson RW (1977) Total motion knee goniometry. J Biomech 10(3):183–193CrossRefGoogle Scholar
  91. Tranberg R, Saari T, Zügner R, Kärrholm J (2011) Simultaneous measurements of knee motion using an optical tracking system and radiostereometric analysis (RSA). Acta Orthop 82(2):171–176.  https://doi.org/10.3109/17453674.2011.570675CrossRefGoogle Scholar
  92. Veress SA, Lippert FG, Hou MC, Takamoto T (1979) Patellar tracking patterns measurement by analytical x-ray photogrammetry. J Biomech 12(9):639–650CrossRefGoogle Scholar
  93. Wan EA, Nelson AT (2001) Chapter 5- dual extended Kalman filter methods. In: Haykin S (ed) Kalman filtering and neural networks. New York, NY: Wiley, pp 123–173Google Scholar
  94. Wang S, Passias P, Li G, Li G, Wood K (2008) Measurement of vertebral kinematics using noninvasive image matching method-validation and application. Spine 33(11):E355–E361.  https://doi.org/10.1097/BRS.0b013e3181715295CrossRefGoogle Scholar
  95. Wang B, Roach KE, Kapron AL, Fiorentino NM, Saltzman CL, Singer M, Anderson AE (2015) Accuracy and feasibility of high-speed dual fluoroscopy and model-based tracking to measure in vivo ankle arthrokinematics. Gait Posture 41(4):888–893.  https://doi.org/10.1016/j.gaitpost.2015.03.008CrossRefGoogle Scholar
  96. Ward SR, Shellock FG, Terk MR, Salsich GB, Powers CM (2002) Assessment of patellofemoral relationships using kinematic MRI: comparison between qualitative and quantitative methods. J Magn Reson Imaging 16(1):69–74.  https://doi.org/10.1002/jmri.10124CrossRefGoogle Scholar
  97. Williams AA, Elias JJ, Tanaka MJ, Thawait GK, Demehri S, Carrino JA, Cosgarea AJ (2016) The relationship between tibial tuberosity–trochlear groove distance and abnormal patellar tracking in patients with unilateral patellar instability. Arthrosc J Arthrosc Relat Sur 32(1):55–61CrossRefGoogle Scholar
  98. Wilson NA, Press JM, Koh JL, Hendrix RW, Zhang LQ (2009) In vivo noninvasive evaluation of abnormal patellar tracking during squatting in patients with patellofemoral pain. J Bone Joint Surg Am 91(3):558–566.  https://doi.org/10.2106/jbjs.g.00572CrossRefGoogle Scholar
  99. You BM, Siy P, Anderst W, Tashman S (2001) In vivo measurement of 3-D skeletal kinematics from sequences of biplane radiographs: application to knee kinematics. IEEE Trans Med Imaging 20(6):514–525.  https://doi.org/10.1109/42.929617CrossRefGoogle Scholar
  100. Zhao K, Breighner R, Holmes D 3rd, Leng S, McCollough C, An KN (2015) A technique for quantifying wrist motion using four-dimensional computed tomography: approach and validation. J Biomech Eng 137(7).  https://doi.org/10.1115/1.4030405
  101. Zuhlke T, Fine J, Haughton VM, Anderson PA (2009) Accuracy of dynamic computed tomography to calculate rotation occurring at lumbar spinal motion segments. Spine 34(6):E215–E218.  https://doi.org/10.1097/BRS.0b013e318199700dCrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Rehabilitation Medicine Department, Functional and Applied Biomechanics SectionNational Institutes of HealthBethesdaUSA

Section editors and affiliations

  • William Scott Selbie
    • 1
  1. 1.Has-Motion Inc.KingstonCanada

Personalised recommendations