Observing and Learning Complex Actions: On the Example of Guitar Playing

  • Tom Gardner
  • Emily S. Cross
Reference work entry


With very little effort or thought, we can understand the goals and intentions of other people we encounter in our daily lives through watching their movements. In this chapter, we discuss the action observation network (AON), which is thought to be a key player in linking action perception, production, and understanding. We focus on two prominent theories of AON function and detail how different kinds of experience (namely, physical and visual experience) shape AON engagement. We then highlight work done by our laboratory and others that uses complex guitar and dance training paradigms to trace the emergence of experience-dependent plasticity in the human brain and behavior. This work highlights common and distinct neural signatures of visual and visuomotor learning and how such training paradigms can help to adjudicate between competing theories of AON function. The use of cutting edge methodological techniques is also evaluated, and we conclude with some considerations of implications for musicians and dancers and future directions for this research.


Predictive coding Action observation AON Direct matching Familiarity Physical learning Visual learning Dance Music Guitar Expertise 


  1. Basler N, Lorey B, Pilgramm S, Naumann T, Kindermann S, Stark F, Zentgraf R, Williams AM, Munzert J (2014) The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves. Front Hum Neurosci 8:586Google Scholar
  2. Blakemore SJ, Frith C (2005) The role of motor contagion in the prediction of action. Neuropsychology 43:260–267CrossRefGoogle Scholar
  3. Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund H-J, Rizzolatti G (2004) Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron 42:323–334CrossRefGoogle Scholar
  4. Calvo-Merino B, Glaser DE, Grèzes J, Passingham RE, Haggard P (2005) Action observation and acquired motor skills: an fMRI study with expert dancers. Cereb Cortex 15:1243–1249CrossRefGoogle Scholar
  5. Caspers S, Zilles K, Laird A, Eickhoff S (2010) ALE meta-analysis of action observation and imitation in the human brain. NeuroImage 50:1148–1167CrossRefGoogle Scholar
  6. Cross ES, Hamilton AF, Grafton ST (2006) Building a motor simulation de novo: observation of dance by dancers. NeuroImage 31(3):1257–1267CrossRefGoogle Scholar
  7. Cross ES, Hamilton AF, Kraemer DJ, Kelley WM, Grafton ST (2009a) Dissociable substrates for body motion and physical experience in the human action observation network. Eur J Neurosci 30(7):1383–1392CrossRefGoogle Scholar
  8. Cross ES, Kraemer DJ, Hamilton AF, Kelley WM, Grafton ST (2009b) Sensitivity of the action observation network to physical and observational learning. Cereb Cortex 19(2):315–326CrossRefGoogle Scholar
  9. Cross ES, Liepelt R, de C. Hamilton AF, Parkinson J, Ramsey R, Stadler W, Prinz W (2012) Robotic movement preferentially engages the action observation network. Hum Brain Mapp 33(9):2238–2254CrossRefGoogle Scholar
  10. Cross ES, Stadler W, Parkinson J, Schütz-Bosbach S, Prinz W (2013) The influence of visual training on predicting complex action sequences. Hum Brain Mapp 34:467–486CrossRefGoogle Scholar
  11. Csibra G (1993) Action mirroring and action understanding: an alternative account. In: Haggard P, Rossetti Y, Kawato M (eds) Sensorimotor foundations of higher cognition. Oxford University Press, Oxford, pp 435–459CrossRefGoogle Scholar
  12. di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91(1):176–180CrossRefGoogle Scholar
  13. Falck-Ytter T, Gredebäck G, von Hofsten C (2006) Infants predict other people’s action goals. Nat Neurosci 9:878–879CrossRefGoogle Scholar
  14. Friston KJ, Harrison L, Penny WD (2003) Dynamic causal modelling. NeuroImage 19:1273–1302CrossRefGoogle Scholar
  15. Gallese V, Goldman AI (1998) Mirror neurons and the simulation theory of mind reading. Trends Cogn Sci 2:493–501CrossRefGoogle Scholar
  16. Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119(Pt 2):593–609CrossRefGoogle Scholar
  17. Gallese V, Keysers C, Rizzolatti G (2004) A unifying view of the basis of social cognition. Trends Cogn Sci 8(9):396–403CrossRefGoogle Scholar
  18. Gardner T, Goulden N, Cross ES (2015) Dynamic modulation of the action observation network by movement familiarity. J Neurosci 35(4):1561–1572CrossRefGoogle Scholar
  19. Gardner T, Aglinskas A, Cross ES (2017). Using guitar learning to probe the Action Observation Network’s response to visuomotor familiarity. NeuroImage, 157:174–189.Google Scholar
  20. Gazzola V, Keysers C (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex 19:1239–1255CrossRefGoogle Scholar
  21. Grafton ST (2009) Embodied cognition and the simulation of action to understand others. Ann N Y Acad Sci 1156:97–117CrossRefGoogle Scholar
  22. Hamilton AF (2013) The mirror neuron system contributes to social responding. Cortex 49(10):2957–2959CrossRefGoogle Scholar
  23. Hamilton AF, Grafton ST (2006) Goal representation in human anterior intraparietal sulcus. J Neurosci 26:1133–1137CrossRefGoogle Scholar
  24. Iacoboni M, Koski LM, Brass M, Bekkering H, Woods RP, Dubeau MC, Mazziotta JC, Rizzolatti G. (2001). Reafferent copies of imitated actions in the right superior temporal cortex. Proceedings of the National Academy of Sciences USA, 98(24):13995–13999.Google Scholar
  25. Keysers C, Gazzola V (2009) Expanding the mirror: vicarious activity for actions, emotions, and sensations. Curr Opin Neurobiol 19:666–671CrossRefGoogle Scholar
  26. Keysers C, Perrett DI (2004) Demystifying social cognition: a Hebbian perspective. Trends Cogn Sci 8:501–507CrossRefGoogle Scholar
  27. Kilner JM, Friston KJ, Frith CD (2007a) Predictive coding: an account of the mirror neuron system. Cogn Process 8:159–166CrossRefGoogle Scholar
  28. Kilner JM, Friston KJ, Frith CD (2007b) The mirror-neuron system: a Bayesian perspective. NeuroReport 18:619–623CrossRefGoogle Scholar
  29. Kilner JM, Neal A, Weiskopf N, Friston KJ, Frith CD (2009) Evidence of mirror neurons in human inferior frontal gyrus. J Neurosci 29(32):10153–10159CrossRefGoogle Scholar
  30. Kirsch LP, Cross ES (2015) Additive routes to action learning: layering experience shapes engagement of the action observation network. Cereb Cortex 25:4799–4811CrossRefGoogle Scholar
  31. Kohler E, Keysers C, Umilta MA, Fogassi L, Gallese V, Rizzolatti G (2002) Hearing sounds understanding actions: action representation in mirror neurons. Science 297:846–848CrossRefGoogle Scholar
  32. Lamm C, Nusbaum HC, Meltzoff AN, Decety J (2007) What are you feeling? Using functional magnetic resonance imaging to assess the modulation of sensory and affective responses during empathy for pain. Brain Res 1227:153–161CrossRefGoogle Scholar
  33. Meltzoff AN (2007) Like me: a foundation for social cognition. Dev Sci 10(1):126–134CrossRefGoogle Scholar
  34. Perez-Carrillo A, Arcos J-L, Wanderley M (2016) Estimation of guitar fingering and plucking controls based on multimodal analysis of motion, audio and musical score. Lect Notes Comput Sci: Music Mind Embodiment 9617:71–87CrossRefGoogle Scholar
  35. Ramsey R, Hamilton AFDC (2010) Triangles have goals too: understanding action representation in left aIPS. Neuropsychologia 48(9):2773–2776CrossRefGoogle Scholar
  36. Rizzolatti G, Sinigaglia S (2010) The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 11:264–274CrossRefGoogle Scholar
  37. Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 3:131–141CrossRefGoogle Scholar
  38. Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670CrossRefGoogle Scholar
  39. Schippers MB, Keysers C (2011) Mapping the flow of information within the putative mirror neuron system during gesture observation. NeuroImage 57(1):37–44CrossRefGoogle Scholar
  40. Schubotz RI (2007) Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci 11:211–218CrossRefGoogle Scholar
  41. Sinigaglia C (2013) What type of action understanding is subserved by mirror neurons? Neurosci Lett 540:59–61CrossRefGoogle Scholar
  42. Steinhorst A, Funke J (2014) Mirror neuron activity is no proof for action understanding. Front Hum Neurosci 8:333CrossRefGoogle Scholar
  43. Umiltà MA, Kohler E, Gallese V, Fogassi L, Fadiga L, Keysers C et al (2001) I know what you are doing. A neurophysiological study. Neuron 31:155–165CrossRefGoogle Scholar
  44. Urgesi C, Maieron M, Avenanti A, Tidoni E, Fabbro F, Aglioti SM (2010) Simulating the future of actions in the human corticospinal system. Cereb Cortex 20(11):2511–2521CrossRefGoogle Scholar
  45. Vogt S, Buccino G, Wohlschläger AM, Canessa N, Shah NJ, Zilles K, Eickhoff SB, Freund H, Rizzolatti G, Fink GR (2007) Prefrontal involvement in imitation learning of hand actions: effects of practice and expertise. NeuroImage 37(4):1371–1383CrossRefGoogle Scholar
  46. Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond Ser B Biol Sci 358:593–602CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tom Gardner
    • 1
  • Emily S. Cross
    • 1
  1. 1.Bangor UniversityBangorUK

Section editors and affiliations

  • Sebastian I. Wolf
    • 1
  1. 1.Movement Analysis LaboratoryClinic for Orthopedics and Trauma Surgery; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury;Heidelberg University HospitalHeidelbergGermany

Personalised recommendations