Three-Dimensional Human Kinematic Estimation Using Magneto-Inertial Measurement Units

  • Andrea Cereatti
  • Ugo Della Croce
  • Angelo M. Sabatini
Reference work entry


This chapter deals with the estimation of human kinematics using magneto and inertial sensing technology. A magneto-inertial measurement unit typically embeds a triaxial gyroscope, a triaxial accelerometer, and a triaxial magnetic sensor in the same assembly. By combining the information provided by each sensor within a sensor fusion framework, it is possible to determine the unit orientation with respect to a common global coordinate system. Recent advances in the construction of microelectromechanical system devices have made possible the manufacturing of small and light devices. These advances have widened the range of possible applications to include areas such as human movement. This chapter aims at providing the reader with a picture of the state of the art in the measurement and estimation methods for the description of human joint kinematics using magneto-inertial sensing technology. In the first section, fundamental concepts of rigid body kinematics are introduced with special reference to magneto-inertial measurements. Then a short description of the operational characteristics of accelerometers, gyroscopes, and magnetometers is provided. The third section reports theory and methods for the estimation of the orientation and position of magneto-inertial measurement units along with the implementation of a Kalman filter for 3D orientation estimate as an example. In the last section, a critical review of the most common methodologies for the joint kinematic estimation is reported.


Joint mechanics Acceleration Angular velocity Orientation Position Multi-segmental model Multibody Anatomical coordinate system Joint kinematics Wearable sensors Kalman filter Pose 



Anatomical landmark identification


Angle Random Walk


Anatomical coordinate system


Body-fixed coordinate system


Center of rotation


Coordinate system


Degree of freedom


Extended Kalman filter




Kalman filter


Global coordinate system


Inertial measurement unit


MIMU coordinate system


Microelectromechanical systems


(Magneto)-inertial measurement unit


Manual Unit Alignment


Nano-electromechanical systems


Velocity Random Walk

〈⋅, ⋅〉

Dot product between vectors

Quaternion multiplication


Skew-symmetric operator


  1. Barbour N, Schmidt G (2001) Inertial sensor technology trends. IEEE Sensors J 1:332–339CrossRefGoogle Scholar
  2. Bergamini E, Ligorio G, Summa A, Vannozzi G, Cappozzo A, Sabatini AM (2014) Estimating orientation using magnetic and inertial sensors and different sensor fusion approaches: accuracy assessment in manual and locomotion tasks. Sensors 14:18625–18649CrossRefGoogle Scholar
  3. Biryukova EV, Roby-Brami A, Frolov AA, Mokhtari M (2000) Kinematics of human arm reconstructed from spatial tracking system recordings. J Biomech 33:985–995CrossRefGoogle Scholar
  4. van den Bogert AJ, Smith GD, Nigg BM (1994) In vivo determination of the anatomical axes of the ankle joint complex: an optimization approach. J Biomech 27:1477–1488CrossRefGoogle Scholar
  5. Bouvier B, Duprey S, Claudon L, Dumas R, Savescu A (2015) Upper limb kinematics using inertial and magnetic sensors: comparison of sensor-to-segment calibrations. Sensors 15:18813–18833CrossRefGoogle Scholar
  6. Bregler C, Malik J (1998) Tracking people with twists and exponential maps. In: Proceedings of 1998 I.E. computer society conference on computer vision pattern recognition (Cat. No.98CB36231), pp 8–15Google Scholar
  7. Camomilla V, Bergamini E, Fantozzi S, Vannozzi G (2015) In-field use of wearable magneto-inertial sensors for sports performance evaluation. In: 33rd international conference on biomechanics in sport, pp 1–4Google Scholar
  8. Cappozzo A, Catani F, Della Croce U, Leardini A (1995) Position and orientation in space of bones during movement. Clin Biomech 10:171–178CrossRefGoogle Scholar
  9. Cereatti A, Margheritini F, Donati M, Cappozzo A (2010) Is the human acetabulofemoral joint spherical? J Bone Joint Surg Br 92:311–314CrossRefGoogle Scholar
  10. Cereatti A, Trojaniello D, Della Croce U (2015) Accurately measuring human movement using magneto-inertial sensors: techniques and challenges. In: 2015 I.E. international symposium on inert sensors system proceedings, pp 1–4Google Scholar
  11. Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 356:111–118Google Scholar
  12. Cooper G, Sheret I, McMillian L, Siliverdis K, Sha N, Hodgins D et al (2009) Inertial sensor-based knee flexion/extension angle estimation. J Biomech 42:2678–2685CrossRefGoogle Scholar
  13. Corke PI (2007) A simple and systematic approach to assigning Denavit-Hartenberg parameters. IEEE Trans Robot 23:590–594CrossRefGoogle Scholar
  14. Crabolu M, Pani D, Raffo L, Cereatti A (2016) Estimation of the center of rotation using wearable magneto-inertial sensors. J Biomech 49:3928–3933CrossRefGoogle Scholar
  15. Cutti AG, Giovanardi A, Rocchi L, Davalli A, Sacchetti R (2008) Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med Biol Eng Comput 46:169–178CrossRefGoogle Scholar
  16. Cutti AG, Ferrari A, Garofalo P, Raggi M, Cappello A, Ferrari A (2010) “Outwalk”: a protocol for clinical gait analysis based on inertial and magnetic sensors. Med Biol Eng Comput 48:17–25CrossRefGoogle Scholar
  17. Dumas R, Chèze L (2007) 3D inverse dynamics in non-orthonormal segment coordinate system. Med Biol Eng Comput 45:315–322CrossRefGoogle Scholar
  18. El-Sheimy N, Hou H, Niu X (2008) Analysis and modeling of inertial sensors using Allan variance. IEEE Trans Instrum Meas 57:140–149CrossRefGoogle Scholar
  19. Favre J, Aissaoui R, Jolles BM, de Guise JA, Aminian K (2009) Functional calibration procedure for 3D knee joint angle description using inertial sensors. J Biomech 42:2330–2335CrossRefGoogle Scholar
  20. Frigo C, Rabuffetti M, Kerrigan DC, Deming LC, Pedotti A (1998) Functionally oriented and clinically feasible quantitative gait analysis method. Med Biol Eng Comput 36:179–185CrossRefGoogle Scholar
  21. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144CrossRefGoogle Scholar
  22. Koning BHW, van der Krogt MM, Baten CTM, Koopman BFJM (2013) Driving a musculoskeletal model with inertial and magnetic measurement units. Comput Methods Biomech Biomed Eng 5842:37–41Google Scholar
  23. Ligorio G, Sabatini AM (2015) A novel Kalman filter for human motion tracking with an inertial-based dynamic inclinometer. IEEE Trans Biomed Eng 62:2033–2043CrossRefGoogle Scholar
  24. Ligorio G, Sabatini AM (2016) Dealing with magnetic disturbances in human motion capture: a survey of techniques. Micromachines 7:1–17Google Scholar
  25. Luinge HJ, Veltink PH, Baten CTM (2007) Ambulatory measurement of arm orientation. J Biomech 40:78–85CrossRefGoogle Scholar
  26. Madgwick SOH, Harrison AJL, Vaidyanathan R (2011) Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE Int Conf Rehabil Robot 2011:5975346.
  27. McGinnis RS, Perkins NC (2013) Inertial sensor based method for identifying spherical joint center of rotation. J Biomech 46:2546–2549CrossRefGoogle Scholar
  28. Picerno P, Cereatti A, Cappozzo A (2008) Joint kinematics estimate using wearable inertial and magnetic sensing modules. Gait Posture 28:588–595CrossRefGoogle Scholar
  29. Prentice MJ (1986) Orientation statistics without parametric assumptions. J R Stat Soc Ser B 48:214–222MathSciNetzbMATHGoogle Scholar
  30. Roetenberg D, Luinge H, Slycke P (2013) Xsens MVN: Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors. In: Xsens Technologies, whitepaper, version 3:1–9.Google Scholar
  31. Sabatini AM (2011) Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors 11:1489–1525CrossRefGoogle Scholar
  32. Seel T, Schauer T, Raisch J (2012) Joint axis and position estimation from inertial measurement data by exploiting kinematic constraints. In: 2012 IEEE international conference on control applications (CCA). Part of 2012 IEEE multi-conference on systems and control, Dubrovnik, 3–5 Oct 2012, pp 45–49Google Scholar
  33. Seel T, Raisch J, Schauer T (2014) IMU-based joint angle measurement for gait analysis. Sensors 14:6891–6909CrossRefGoogle Scholar
  34. Shuster MD (1993) A survey of attitude representations. J Astronaut Sci 41:439–517MathSciNetGoogle Scholar
  35. Skog I, Händel P, Nilsson J-O, Rantakokko J (2010) Zero-velocity detection – an algorithm evaluation. IEEE Trans Biomed Eng 57:2657–2666CrossRefGoogle Scholar
  36. Slajpah S, Kamnik R, Munih M (2014) Kinematics based sensory fusion for wearable motion assessment in human walking. Comput Methods Prog Biomed 116:131–144CrossRefGoogle Scholar
  37. Sommer HJ, Miller NR (1980) A technique for kinematic modeling of anatomical joints. J Biomech Eng 102:311–317CrossRefGoogle Scholar
  38. Taetz B, Bleser G, Miezal M (2016) Towards self-calibrating inertial body motion capture. 19th Int Conf Informa Fusion 1751–1759Google Scholar
  39. Titterton DH, Weston JL (2004) Strapdown inertial navigation technology. Editor AIAA Educ. Ser., RestonCrossRefGoogle Scholar
  40. Veeger HEJ (2000) The position of the rotation center of the glenohumeral joint. J Biomech 33:1711–1715CrossRefGoogle Scholar
  41. Waldron K, Schmiedeler J (2008) Kinematics. Springer Handbook of Robotics, pp 9–33Google Scholar
  42. Wells D, Cereatti A, Camomilla V, Donnelly C (2015) A calibration procedure for mimu sensors allowing for the calculation of elbow angles. In: 33rd international conference on biomechanics in sports, PoitiersGoogle Scholar
  43. Woodman OJ (2007) An introduction to inertial navigation. Cambridge University Press, CambridgeGoogle Scholar
  44. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D et al (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – part I: ankle, hip, and spine. J Biomech 35:543–548CrossRefGoogle Scholar
  45. Wu G, Van Der Helm FCT, Veeger HEJ, Makhsous M, Van Roy P, Anglin C et al (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion – part II: shoulder, elbow, wrist and hand. J Biomech 38:981–992CrossRefGoogle Scholar
  46. Yazdi N, Ayazi F, Najafi K (1998) Micromachined inertial sensors. Proc IEEE 86:1640–1658CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Andrea Cereatti
    • 1
    • 2
    • 3
  • Ugo Della Croce
    • 1
    • 2
  • Angelo M. Sabatini
    • 4
  1. 1.Department POLCOMINGUniversity of SassariSassariItaly
  2. 2.Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal SystemUniversity of SassariSassariItaly
  3. 3.Department of Electronics and TelecommunicationsPolitecnico di TorinoTurinItaly
  4. 4.The BioRobotics Institute, Scuola Superiore Sant’AnnaPisaItaly

Section editors and affiliations

  • William Scott Selbie
    • 1
  1. 1.Has-Motion Inc.KingstonCanada

Personalised recommendations