Skip to main content

Crowd Formation Generation and Control

  • Reference work entry
  • First Online:
Handbook of Human Motion

Abstract

Crowd formation transformation simulates crowd behaviors from one formation to another. This kind of transformation has often been used in animation films, group calisthenics performance, video games, and other special effect applications. Given a source formation and a target formation, one intuitive approach to achieve this kind of transformation between two formations is to establish the source point and the destination point for each agent and plan the trajectory for each agent while maintaining collision free maneuvers. Crowd formation generation and control usually consists of five different parts: formation sampling, pair assignment, trajectory generation, motion control, and evaluation. In this chapter, we will describe the involved techniques from abstract user input to collective crowd formation transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Fiorini P, Shiller Z (1998) Motion planning in dynamic environments using velocity obstacles. Int J Rob Res 17(7):760–772

    Article  Google Scholar 

  • Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976

    Article  MathSciNet  MATH  Google Scholar 

  • Gu Q, Deng Z (2011) Formation sketching: an approach to stylize groups in crowd simulation. In: Proceedings of graphics interface 2011, Canadian Human-Computer Communications Society, pp 1–8

    Google Scholar 

  • Gu Q, Deng Z (2013) Generating freestyle group formations in agent-based crowd simulations. IEEE Comput Graph Appl 33(1):20–31

    Article  Google Scholar 

  • Guy SJ, van den Berg J, Liu W, Lau R, Lin MC, Manocha D (2012) A statistical similarity measure for aggregate crowd dynamics. ACM Trans Graph 31(6):190:1–190:11

    Article  Google Scholar 

  • Han D, Noh J, Jin X, S Shin J, Y Shin S (2014) On-line real-time physics-based predictive motion control with balance recovery. Comput Graphics Forum 33:245–254. Wiley Online Library

    Google Scholar 

  • Han D, Hong S, Noh J, Jin X, Shin JS (2016) Online real-time locomotive motion transformation based on biomechanical observations. Comput Anim Virtual Worlds 27(3–4):378–384

    Article  Google Scholar 

  • Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282

    Article  Google Scholar 

  • Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407(6803):487–490

    Article  Google Scholar 

  • Henry J, Shum HP, Komura T (2012) Environment-aware real-time crowd control. In: Proceedings of the 11th ACM SIGGRAPH/Eurographics conference on computer animation, Eurographics Association, pp 193–200

    Google Scholar 

  • Henry J, Shum HP, Komura T (2014) Interactive formation control in complex environments. IEEE Trans Vis Comput Graph 20(2):211–222

    Article  Google Scholar 

  • Jin X, Xu J, Wang CC, Huang S, Zhang J (2008) Interactive control of large-crowd navigation in virtual environments using vector fields. IEEE Comput Graph Appl 28(6):37–46

    Article  Google Scholar 

  • Klotsman M, Tal A (2012) Animation of flocks flying in line formations. Artif Life 18(1):91–105

    Article  Google Scholar 

  • Kuhn HW (1955) The hungarian method for the assignment problem. Naval Res Logist Q 2(1–2):83–97

    Article  MathSciNet  MATH  Google Scholar 

  • Kwon T, Lee KH, Lee J, Takahashi S (2008) Group motion editing. ACM Trans Graph 27:80

    Article  Google Scholar 

  • Lakoba TI, Kaup DJ, Finkelstein NM (2005) Modifications of the helbing-molnar-farkasvicsek social force model for pedestrian evolution. Simulation 81(5):339–352

    Article  Google Scholar 

  • Lerner A, Fitusi E, Chrysanthou Y, Cohen-Or D (2009) Fitting behaviors to pedestrian simulations. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, pp 199–208

    Google Scholar 

  • Munkres J (1957) Algorithms for the assignment and transportation problems. J Soc Ind Appl Math 5(1):32–38

    Article  MathSciNet  MATH  Google Scholar 

  • Pelechano N, Allbeck JM, Badler NI (2007) Controlling individual agents in high-density crowd simulation. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, Eurographics Association, pp 99–108

    Google Scholar 

  • Pettré J, OndÅ™ej J, Olivier AH, Cretual A, Donikian S (2009) Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, pp 189–198

    Google Scholar 

  • Ren J, Wang X, Jin X, Manocha D (2016) Simulating flying insects using dynamics and data-driven noise modeling to generate diverse collective behaviors. PLoS One 11(5):e0155698

    Article  Google Scholar 

  • Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput Graph 21(4):25–34

    Article  Google Scholar 

  • Takahashi S, Yoshida K, Kwon T, Lee KH, Lee J, Shin SY (2009) Spectral-based group formation control. Comput Graphics Forum 28: 639–648. Wiley Online Library

    Google Scholar 

  • van den Berg J, Lin M, Manocha D (2008) Reciprocal velocity obstacles for real-time multi-agent navigation. In: Robotics and automation, 2008. ICRA 2008. IEEE international conference on Robotics and Automation, IEEE, pp. 1928–1935

    Google Scholar 

  • van den Berg J, Guy SJ, Lin M, Manocha D (2011) Reciprocal n-body collision avoidance. In: Robotics research, Springer, pp 3–19

    Google Scholar 

  • Wang X, Ren J, Jin X, Manocha D (2015) Bswarm: biologically-plausible dynamics model of insect swarms. In: Proceedings of the 14th ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, pp 111–118

    Google Scholar 

  • Xu M, Wu Y, Ye Y, Farkas I, Jiang H, Deng Z (2015) Collective crowd formation transform with mutual information–based runtime feedback. Comput Graphics Forum 34:60–73. Wiley Online Library

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaping Ren .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ren, J., Jin, X., Deng, Z. (2018). Crowd Formation Generation and Control. In: Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-14418-4_15

Download citation

Publish with us

Policies and ethics