Advertisement

Crowd Formation Generation and Control

  • Jiaping Ren
  • Xiaogang Jin
  • Zhigang Deng
Reference work entry

Abstract

Crowd formation transformation simulates crowd behaviors from one formation to another. This kind of transformation has often been used in animation films, group calisthenics performance, video games, and other special effect applications. Given a source formation and a target formation, one intuitive approach to achieve this kind of transformation between two formations is to establish the source point and the destination point for each agent and plan the trajectory for each agent while maintaining collision free maneuvers. Crowd formation generation and control usually consists of five different parts: formation sampling, pair assignment, trajectory generation, motion control, and evaluation. In this chapter, we will describe the involved techniques from abstract user input to collective crowd formation transformations.

Keywords

Crowd simulation Motion control Motion transition Evaluation 

References

  1. Fiorini P, Shiller Z (1998) Motion planning in dynamic environments using velocity obstacles. Int J Rob Res 17(7):760–772CrossRefGoogle Scholar
  2. Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976MathSciNetCrossRefzbMATHGoogle Scholar
  3. Gu Q, Deng Z (2011) Formation sketching: an approach to stylize groups in crowd simulation. In: Proceedings of graphics interface 2011, Canadian Human-Computer Communications Society, pp 1–8Google Scholar
  4. Gu Q, Deng Z (2013) Generating freestyle group formations in agent-based crowd simulations. IEEE Comput Graph Appl 33(1):20–31CrossRefGoogle Scholar
  5. Guy SJ, van den Berg J, Liu W, Lau R, Lin MC, Manocha D (2012) A statistical similarity measure for aggregate crowd dynamics. ACM Trans Graph 31(6):190:1–190:11CrossRefGoogle Scholar
  6. Han D, Noh J, Jin X, S Shin J, Y Shin S (2014) On-line real-time physics-based predictive motion control with balance recovery. Comput Graphics Forum 33:245–254. Wiley Online LibraryGoogle Scholar
  7. Han D, Hong S, Noh J, Jin X, Shin JS (2016) Online real-time locomotive motion transformation based on biomechanical observations. Comput Anim Virtual Worlds 27(3–4):378–384CrossRefGoogle Scholar
  8. Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282CrossRefGoogle Scholar
  9. Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407(6803):487–490CrossRefGoogle Scholar
  10. Henry J, Shum HP, Komura T (2012) Environment-aware real-time crowd control. In: Proceedings of the 11th ACM SIGGRAPH/Eurographics conference on computer animation, Eurographics Association, pp 193–200Google Scholar
  11. Henry J, Shum HP, Komura T (2014) Interactive formation control in complex environments. IEEE Trans Vis Comput Graph 20(2):211–222CrossRefGoogle Scholar
  12. Jin X, Xu J, Wang CC, Huang S, Zhang J (2008) Interactive control of large-crowd navigation in virtual environments using vector fields. IEEE Comput Graph Appl 28(6):37–46CrossRefGoogle Scholar
  13. Klotsman M, Tal A (2012) Animation of flocks flying in line formations. Artif Life 18(1):91–105CrossRefGoogle Scholar
  14. Kuhn HW (1955) The hungarian method for the assignment problem. Naval Res Logist Q 2(1–2):83–97MathSciNetCrossRefzbMATHGoogle Scholar
  15. Kwon T, Lee KH, Lee J, Takahashi S (2008) Group motion editing. ACM Trans Graph 27:80CrossRefGoogle Scholar
  16. Lakoba TI, Kaup DJ, Finkelstein NM (2005) Modifications of the helbing-molnar-farkasvicsek social force model for pedestrian evolution. Simulation 81(5):339–352CrossRefGoogle Scholar
  17. Lerner A, Fitusi E, Chrysanthou Y, Cohen-Or D (2009) Fitting behaviors to pedestrian simulations. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, pp 199–208Google Scholar
  18. Munkres J (1957) Algorithms for the assignment and transportation problems. J Soc Ind Appl Math 5(1):32–38MathSciNetCrossRefzbMATHGoogle Scholar
  19. Pelechano N, Allbeck JM, Badler NI (2007) Controlling individual agents in high-density crowd simulation. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, Eurographics Association, pp 99–108Google Scholar
  20. Pettré J, Ondřej J, Olivier AH, Cretual A, Donikian S (2009) Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, pp 189–198Google Scholar
  21. Ren J, Wang X, Jin X, Manocha D (2016) Simulating flying insects using dynamics and data-driven noise modeling to generate diverse collective behaviors. PLoS One 11(5):e0155698CrossRefGoogle Scholar
  22. Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput Graph 21(4):25–34CrossRefGoogle Scholar
  23. Takahashi S, Yoshida K, Kwon T, Lee KH, Lee J, Shin SY (2009) Spectral-based group formation control. Comput Graphics Forum 28: 639–648. Wiley Online LibraryGoogle Scholar
  24. van den Berg J, Lin M, Manocha D (2008) Reciprocal velocity obstacles for real-time multi-agent navigation. In: Robotics and automation, 2008. ICRA 2008. IEEE international conference on Robotics and Automation, IEEE, pp. 1928–1935Google Scholar
  25. van den Berg J, Guy SJ, Lin M, Manocha D (2011) Reciprocal n-body collision avoidance. In: Robotics research, Springer, pp 3–19Google Scholar
  26. Wang X, Ren J, Jin X, Manocha D (2015) Bswarm: biologically-plausible dynamics model of insect swarms. In: Proceedings of the 14th ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, pp 111–118Google Scholar
  27. Xu M, Wu Y, Ye Y, Farkas I, Jiang H, Deng Z (2015) Collective crowd formation transform with mutual information–based runtime feedback. Comput Graphics Forum 34:60–73. Wiley Online LibraryGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Lab of CAD&CGZhejiang UniversityHangzhouChina
  2. 2.Department of Computer ScienceUniversity of HoustonHoustonUSA

Section editors and affiliations

  • Zhigang Deng
    • 1
  1. 1.Department of Computer Science,University of HoustonHoustonUSA

Personalised recommendations