Skip to main content

Example-Based Skinning Animation

  • Reference work entry
  • First Online:
Handbook of Human Motion
  • 801 Accesses

Abstract

The skinning technique has been widely used for synthesizing the natural skin deformation of human-like characters in a broad range of computer graphics applications. Many skinning methods have been proposed to improve the deformation quality while achieving real-time computational performance. The design of skinned character models, however, requires heavy manual labor even for experienced digital artists with professional software and tools. This chapter presents an introduction to an example-based skinning method, which builds a skinned character model using an example sequence of handcrafted or physically simulated skin deformations. Various types of machine learning techniques and statistical analysis methods have been proposed for example-based skinning. In this chapter, we first review state-of-the-art skinning techniques, especially for a standard skinning model called linear blend skinning that uses a virtual skeleton hierarchy to drive the skin deformation. Next, we describe several automated methods for building a skeleton-based skinned character model using example skin shapes. We introduce skinning decomposition methods that convert a shape animation sequence into a skinned character and its skeleton motion. We also explain a practical application of skinning decomposition, which builds a so-called helper bone rig from an example animation sequence. We finally discuss the future directions of example-based skinning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Angelidis A, Singh K (2007) Kinodynamic skinning using volume-preserving deformations. In: Proceedings of ACM SIGGRAPH/Eurographics symposium on computer animation 2007, pp 129–140

    Google Scholar 

  • Baran I, Popović J (2007) Automatic rigging and animation of 3d characters. ACM Trans Graph 26(3):72:1–72:8

    Article  Google Scholar 

  • Cooper S, Hertzmann A, Popović Z (2007) Active learning for real-time motion controllers. ACM Trans Graph 26(3):5

    Article  Google Scholar 

  • Fan Y, Litven J, Pai DK (2014) Active volumetric musculoskeletal systems. ACM Trans Graph 33(4):152

    Article  Google Scholar 

  • Grassia FS (1998) Practical parameterization of rotations using the exponential map. Graph Tool 3(3):29–48

    Article  Google Scholar 

  • Hahn F, Martin S, Thomaszewski B, Sumner R, Coros S, Gross M (2012) Rigspace physics. ACM Trans Graph 31(4):72:1–72:8

    Article  Google Scholar 

  • Hahn F, Thomaszewski B, Coros S, Sumner R, Markus G (2013) Efficient simulation of secondary motion in rig-space. In: Proceedings of ACM SIGGRAPH/Eurographics symposium on computer animation 2013, pp 165–171

    Google Scholar 

  • Horn BKP (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A 4(4):629–642

    Article  Google Scholar 

  • Jacobson A, Sorkine O (2011) Stretchable and twistable bones for skeletal shape deformation. ACM Trans Graph 30(6):Article 165

    Google Scholar 

  • Jacobson A, Baran I, Popović J, Sorkine O (2011) Bounded biharmonic weights for real-time deformation. ACM Trans Graph 30(4):78:1–78:8

    Article  Google Scholar 

  • James DL, Twigg CD (2005) Skinning mesh animations. ACM Trans Graph 24(3):399–407

    Article  Google Scholar 

  • Kavan L, Sorkine O (2012) Elasticity-inspired deformers for character articulation. ACM Trans Graph 31(6):Article 196

    Google Scholar 

  • Kavan L, Collins S, Zara J, O’Sullivan C (2007) Skinning with dual quaternions. In: Proceedings of ACM SIGGRAPH symposium on interactive 3D graphics 2007, pp 39–46

    Google Scholar 

  • Kavan L, Sloan PP, O’Sullivan C (2010) Fast and efficient skinning of animated meshes. Comput Graph Forum 29(2):327–336

    Article  Google Scholar 

  • Kim J, Kim CH (2011) Implementation and application of the real-time helperjoint system. In: Game developers conference 2011

    Google Scholar 

  • Kry PG, James DL, Pai DK (2002) Eigenskin: real time large deformation character skinning in hardware. In: Proceedings of ACM SIGGRAPH/Eurographics symposium on computer animation 2002, pp 153–159

    Google Scholar 

  • Kurihara T, Miyata N (2004) Modeling deformable human hands from medical images. In: Proceedings of ACM SIGGRAPH/Eurographics symposium on computer animation 2004, pp 355–363

    Google Scholar 

  • Le BH, Deng Z (2012) Smooth skinning decomposition with rigid bones. ACM Trans Graph 31(6):Article 199

    Google Scholar 

  • Le BH, Deng Z (2014) Robust and accurate skeletal rigging from mesh sequences. ACM Trans Graph 33(4):1–10

    Article  Google Scholar 

  • Lewis JP, Cordner M, Fong N (2000) Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Proceedings of SIGGRAPH 2000, pp 165–172

    Google Scholar 

  • Li D, Sueda S, Neog DR, Pai DK (2013) Thin skin elastodynamics. ACM Trans Graph 32(4):49

    MATH  Google Scholar 

  • Loper M, Black NMMJ (2014) Motion and shape capture from sparse markers. ACM Trans Graph 33(6):220:1–220:13

    Article  Google Scholar 

  • Loper M, Mahmood N, Romero J, Pons-Moll G, Black MJ (2015) SMPL: a skinned multi-person linear model. ACM Trans Graph 34(6):248:1–248:16

    Article  Google Scholar 

  • Magnenat-Thalmann N, Laperrière R, Thalmann D (1988) Joint-dependent local deformations for hand animation and object grasping. In: Proceedings on graphics interface’88, pp 26–33

    Google Scholar 

  • Merry B, Marais P, Gain J (2006) Animation space: a truly linear framework for character animation. ACM Trans Graph 25(6):1400–1423

    Article  Google Scholar 

  • Miller C, Arikan O, Fussell DS (2011) Frankenrigs: building character rigs from multiple sources. IEEE Trans Vis Comput Graph 17(8):1060–1070

    Article  Google Scholar 

  • Mohr A, Gleicher M (2003) Building efficient, accurate character skins from examples. ACM Trans Graph 22(3):562–568

    Article  Google Scholar 

  • Mukai T (2015) Building helper bone rigs from examples. In: Proceedings of ACM SIGGRAPH symposium on interactive 3D graphics and games 2015, pp 77–84

    Google Scholar 

  • Mukai T, Kuriyama S (2016) Efficient dynamic skinning with low-rank helper bone controllers. ACM Trans Graph 35(4):1

    Article  Google Scholar 

  • Neumann T, Varanasi K, Hasler N, Wacker M, Magnor M, Theobalt C (2013) Capture and statistical modeling of arm-muscle deformations. Comput Graph Forum 32(2):285–294

    Article  Google Scholar 

  • Park SI, Hodgins JK (2008) Data-driven modeling of skin and muscle deformation. ACM Trans Graph 27(3):Article 96

    Google Scholar 

  • Parks J (2005) Helper joints: advanced deformations on runtime characters. In: Game developers conference 2005

    Google Scholar 

  • Pons-Moll G, Romero J, Mahmood N, Black MJ (2015) Dyna: a model of dynamic human shape in motion. ACM Trans Graph 33(4):120:1–120–10

    Google Scholar 

  • Pulli RYWK, Popović J (2007) Real-time enveloping with rotational regression. ACM Trans Graph 26(3):73

    Article  Google Scholar 

  • Rumman NA, Fratarcangeli M (2015) Position-based skinning for soft articulated characters. Comput Graph Forum 34(6):240–250

    Article  Google Scholar 

  • Shi X, Zhou K, Tong Y, Desbrun M, Bao H, Guo B (2008) Example-based dynamic skinning in real time. ACM Trans Graph 27(3):29:1–29:8

    Article  Google Scholar 

  • Sloan PPJ, Rose CF, Cohen MF (2001) Shape by example. In: Proceedings of ACM SIGGRAPH symposium on interactive 3D graphics 2011, pp 135–143

    Google Scholar 

  • Tibshirani R (2011) Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc Ser B (Stat Methodol) 73(3):273–282

    Article  MathSciNet  Google Scholar 

  • Wang XC, Phillips C (2002) Multi-weight enveloping: least-squares approximation techniques for skin animation. In: Proceedings of ACM SIGGRAPH/Eurographics symposium on computer animation, pp 129–138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiko Mukai .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mukai, T. (2018). Example-Based Skinning Animation. In: Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-14418-4_14

Download citation

Publish with us

Policies and ethics