Ackland TR, Blanksby BA, Bloomfield J (1988) Inertial characteristics of adolescent male body segments. J Biomech 21(4):319–327. https://doi.org/10.1016/0021-9290(88)90261-8
CrossRef
Google Scholar
Ayusawa K, Venture G, Nakamura Y (2014) Identifiability and identification of inertial parameters using the underactuated base-link dynamics for legged multibody systems. Int J Robot Res 33(3):446–468. https://doi.org/10.1177/0278364913495932
CrossRef
Google Scholar
Bauer JJ, Pavol MJ, Snow CM, Hayes WC (2007) MRI-derived body segment parameters of children differ from age-based estimates derived using photogrammetry. J Biomech 40(13):2904–2910. https://doi.org/10.1016/j.jbiomech.2007.03.006
CrossRef
Google Scholar
Bonnet V, Dumas R, Cappozzo A, Joukov V, Daune G, Kulić D, Fraisse P, Andary S, Venture G (2017) A constrained extended Kalman filter for the optimal estimate of kinematics and kinetics of a sagittal symmetric exercise. J Biomech. https://doi.org/10.1016/j.jbiomech.2016.12.027
Google Scholar
Chandler RF, Clauser CE, McConville JT, Reynolds HM, Young JW (1975) Investigation of inertial properties of the human body. Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Dayton
Google Scholar
Cheng C-K, Chen H-H, Chen C-S, Lee C-L, Chen C-Y (2000) Segment inertial properties of Chinese adults determined from magnetic resonance imaging. Clin Biomech 15(8):559–566. https://doi.org/10.1016/S0268-0033(00)00016-4
CrossRef
Google Scholar
Clauser CE, McConville JT, Young JW (1969) Weight, volume, and center of mass of segments of the human body. Aerospace Medical Research Laboratory, Wright–Patterson Air Force Base, Dayton
CrossRef
Google Scholar
Dao TT, Marin F, Pouletaut P, Charleux F, Aufaure P, Ho Ba Tho MC (2012) Estimation of accuracy of patient-specific musculoskeletal modelling: case study on a post polio residual paralysis subject. Comput Methods Biomech Biomed Eng 15(7):745–751. https://doi.org/10.1080/10255842.2011.558086
CrossRef
Google Scholar
Davidson PL, Wilson SJ, Wilson BD, Chalmers DJ (2008) Estimating subject-specific body segment parameters using a 3-dimensional modeller program. J Biomech 41(16):3506–3510. https://doi.org/10.1016/j.jbiomech.2008.09.021
CrossRef
Google Scholar
Davis RB III, Õunpuu S, Tyburski D, Gage JR (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10(5):575–587. https://doi.org/10.1016/0167-9457(91)90046-Z
CrossRef
Google Scholar
de Leva P (1996a) Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech 29(9):1223–1230. https://doi.org/10.1016/0021-9290(95)00178-6
de Leva P (1996b) Joint center longitudinal positions computed from a selected subset of Chandler’s data. J Biomech 29(9):1231–1233. https://doi.org/10.1016/0021-9290(96)00021-8
CrossRef
Google Scholar
Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG (2007) OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54(11):1940–1950. https://doi.org/10.1109/TBME.2007.901024
CrossRef
Google Scholar
Dempster WT (1955) Space requirements for the seated operator. Wright Air Development Center, Wright-Patterson Air Force Base, Dayton
Google Scholar
Drillis R, Contini R, Bluestein M (1964) Body segment parameters: a survey of measurement techniques. Artif Limbs 8(1):44–66
Google Scholar
Dumas R, Aissaoui R, Mitton D, Skalli W, de Guise JA (2005) Personalized body segment parameters from biplanar low-dose radiography. IEEE Trans Biomed Eng 52(10):1756–1763. https://doi.org/10.1109/TBME.2005.855711
CrossRef
Google Scholar
Dumas R, Cheze L, Verriest JP (2007a) Adjustments to McConville et al. and Young et al. body segment inertial parameters. J Biomech 40(3):543–553. https://doi.org/10.1016/j.jbiomech.2006.02.013
CrossRef
Google Scholar
Dumas R, Cheze L, Verriest JP (2007b) Corrigendum to “Adjustments to McConville et al. and Young et al. body segment inertial parameters”. J Biomech 40(7):1651–1652. https://doi.org/10.1016/j.jbiomech.2006.07.016
CrossRef
Google Scholar
Dumas R, Robert T, Cheze L, Verriest J-P (2015) Thorax and abdomen body segment inertial parameters adjusted from McConville et al. and Young et al. Int Biomech 2(1):113–118. https://doi.org/10.1080/23335432.2015.1112244
CrossRef
Google Scholar
Durkin JL, Dowling JJ, Andrews DM (2002) The measurement of body segment inertial parameters using dual energy X-ray absorptiometry. J Biomech 35(12):1575–1580. https://doi.org/10.1016/S0021-9290(02)00227-0
CrossRef
Google Scholar
Ganley KJ, Powers CM (2004) Determination of lower extremity anthropometric parameters using dual energy X-ray absorptiometry: the influence on net joint moments during gait. Clin Biomech 19(1):50–56. https://doi.org/10.1016/j.clinbiomech.2003.08.002
CrossRef
Google Scholar
Hinrichs RN (1990) Adjustments to the segment center of mass proportions of Clauser et al. (1969). J Biomech 23(9):949–951. https://doi.org/10.1016/0021-9290(90)90361-6
CrossRef
Google Scholar
Ho Hoang K-L, Mombaur K (2015) Adjustments to de Leva-anthropometric regression data for the changes in body proportions in elderly humans. J Biomech 48(13):3732–3736. https://doi.org/10.1016/j.jbiomech.2015.08.018
CrossRef
Google Scholar
Jackson JN, Hass CJ, Fregly BJ (2015) Residual elimination algorithm enhancements to improve foot motion tracking during forward dynamic simulations of Gait. J Biomech Eng 137(11):111002. https://doi.org/10.1115/1.4031418
Google Scholar
Jensen RK (1978) Estimation of the biomechanical properties of three body types using a photogrammetric method. J Biomech 11(8-9):349–358. https://doi.org/10.1016/0021-9290(78)90069-6
CrossRef
Google Scholar
Jovic J, Escande A, Ayusawa K, Yoshida E, Kheddar A, Venture G (2016) Humanoid and human inertia parameter identification using hierarchical optimization. IEEE Trans Robot 32(3):726–735. https://doi.org/10.1109/TRO.2016.2558190
CrossRef
Google Scholar
Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8(3):383–392. https://doi.org/10.1002/jor.1100080310
CrossRef
Google Scholar
McConville JT, Churchill TD, Kaleps I, Clauser CE, Cuzzi J (1980) Anthropometric relationships of body and body segment moments of inertia. Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Dayton
CrossRef
Google Scholar
Mungiole M, Martin PE (1990) Estimating segment inertial properties: comparison of magnetic resonance imaging with existing methods. J Biomech 23(10):1039–1046. https://doi.org/10.1016/0021-9290(90)90319-X
CrossRef
Google Scholar
Pearsall DJ, Reid G (1994) The study of human body segment parameters in biomechanics. Sports Med 18(2):126–140. https://doi.org/10.2165/00007256-199418020-00005
CrossRef
Google Scholar
Pearsall DJ, Reid JG, Livingston LA (1996) Segmental inertial parameters of the human trunk as determined from computed tomography. Ann Biomed Eng 24(2):198–210. https://doi.org/10.1007/BF02667349
CrossRef
Google Scholar
Pillet H, Bonnet X, Lavaste F, Skalli W (2010) Evaluation of force plate-less estimation of the trajectory of the centre of pressure during gait. Comparison of two anthropometric models. Gait Posture 31(2):147–152. https://doi.org/10.1016/j.gaitpost.2009.09.014
CrossRef
Google Scholar
Plagenhoef S (1971) Patterns of human motion: a cinematographic analysis. Prentice-Hall, Englewood Cliffs
Google Scholar
Reid JG, Jensen RK (1990) Human body segment inertia parameters: a survey and status report. Exerc Sport Sci Rev 18(1)
Google Scholar
Sreenivasa M, Chamorro CJG, Gonzalez-Alvarado D, Rettig O, Wolf SI (2016) Patient-specific bone geometry and segment inertia from MRI images for model-based analysis of pathological gait. J Biomech 49(9):1918–1925. https://doi.org/10.1016/j.jbiomech.2016.05.001
CrossRef
Google Scholar
Taddei F, Martelli S, Valente G, Leardini A, Benedetti MG, Manfrini M, Viceconti M (2012) Femoral loads during gait in a patient with massive skeletal reconstruction. Clin Biomech 27(3):273–280. https://doi.org/10.1016/j.clinbiomech.2011.09.006
CrossRef
Google Scholar
Tisserand R, Robert T, Dumas R, Chèze L (2016) A simplified marker set to define the center of mass for stability analysis in dynamic situations. Gait Posture 48:64–67. https://doi.org/10.1016/j.gaitpost.2016.04.032
CrossRef
Google Scholar
Valente G, Pitto L, Testi D, Seth A, Delp SL, Stagni R, Viceconti M, Taddei F (2014) Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? PLoS One 9(11):e112625. https://doi.org/10.1371/journal.pone.0112625
CrossRef
Google Scholar
Vaughan CL, Andrews JG, Hay JG (1982) Selection of body segment parameters by optimization methods. J Biomech Eng 104(1):38–44. https://doi.org/10.1115/1.3138301
CrossRef
Google Scholar
Verriest JP (2012) Automatic anthropometric personalization of a digital human model from a set of subject’s photographs. Work 41(Suppl 1):4061–4068. https://doi.org/10.3233/WOR-2012-0071-4061
Google Scholar
Winter DA (2009) Biomechanics and motor control of human movement. Wiley, New York
CrossRef
Google Scholar
Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – part I: ankle, hip, and spine. J Biomech 35(4):543–548. https://doi.org/10.1016/S0021-9290(01)00222-6
CrossRef
Google Scholar
Wu G, van der Helm FCT, Veeger HEJ, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Buchholz B (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion – part II: shoulder, elbow, wrist and hand. J Biomech 38(5):981–992. https://doi.org/10.1016/j.jbiomech.2004.05.042
CrossRef
Google Scholar
Yang F, Pai Y-C (2014) Can sacral marker approximate center of mass during gait and slip-fall recovery among community-dwelling older adults? J Biomech 47(16):3807–3812. https://doi.org/10.1016/j.jbiomech.2014.10.027
CrossRef
Google Scholar
Yeadon MR, Morlock M (1989) The appropriate use of regression equations for the estimation of segmental inertia parameters. J Biomech 22(6):683–689. https://doi.org/10.1016/0021-9290(89)90018-3
CrossRef
Google Scholar
Young JW, Chandler RF, Snow CC, Robinette KM, Zehner GF, Lofberg MS (1983) Anthropometric and mass distribution characteristics of the adults female. FAA Civil Aeromedical Institute, Oklaoma City
CrossRef
Google Scholar
Zatsiorsky VM, Seluyanov VN, Chugunova LG (1990) Methods of determining mass-inertial characteristics of human body segments. In: Chernyi GG, Regirer SA (eds) Contemporary problems of biomechanics. CRC Press, Massachusetts, pp 272–291
Google Scholar