Estimation of the Body Segment Inertial Parameters for the Rigid Body Biomechanical Models Used in Motion Analysis

Reference work entry

Abstract

Body segment inertial parameters (BSIPs) of the human body are key parameters in biomechanics to study the dynamics of human motion. BSIPs can be obtained in different ways including direct measurements on cadavers or photogrammetry and medical imaging on living humans, but they are more generally estimated by regression equations (based on those measurements).

This chapter overviews three widely used regression equations reported by Winter (2009), de Leva (1996a), and Dumas et al. (2007a). These regression equations are presented for the head with neck, thorax, abdomen, pelvis, and right upper arm, forearm, hand, thigh, shank, and foot segments.

The segment endpoints and segment reference frames defined at the time of the BSIPs assessment and regression computation are reviewed so that the reader can consider how they match with the construction of the rigid body biomechanical models they would like to use for motion analysis. The segment definitions and regression equations that remain undefined or unavailable are indicated, and some assumptions are proposed to amend them, where found applicable. The computation of the segment mass, position of center of mass, moments, and products of inertia from these regression equations are fully detailed, including the modification of the designation of the segment axes and the transformation from right to left segments.

Keywords

Segment mass Center of mass Moments of inertia Regression equations Segment length Segment endpoints Joint center Segment reference frame 

References

  1. Ackland TR, Blanksby BA, Bloomfield J (1988) Inertial characteristics of adolescent male body segments. J Biomech 21(4):319–327.  https://doi.org/10.1016/0021-9290(88)90261-8CrossRefGoogle Scholar
  2. Ayusawa K, Venture G, Nakamura Y (2014) Identifiability and identification of inertial parameters using the underactuated base-link dynamics for legged multibody systems. Int J Robot Res 33(3):446–468.  https://doi.org/10.1177/0278364913495932CrossRefGoogle Scholar
  3. Bauer JJ, Pavol MJ, Snow CM, Hayes WC (2007) MRI-derived body segment parameters of children differ from age-based estimates derived using photogrammetry. J Biomech 40(13):2904–2910.  https://doi.org/10.1016/j.jbiomech.2007.03.006CrossRefGoogle Scholar
  4. Bonnet V, Dumas R, Cappozzo A, Joukov V, Daune G, Kulić D, Fraisse P, Andary S, Venture G (2017) A constrained extended Kalman filter for the optimal estimate of kinematics and kinetics of a sagittal symmetric exercise. J Biomech.  https://doi.org/10.1016/j.jbiomech.2016.12.027Google Scholar
  5. Chandler RF, Clauser CE, McConville JT, Reynolds HM, Young JW (1975) Investigation of inertial properties of the human body. Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, DaytonGoogle Scholar
  6. Cheng C-K, Chen H-H, Chen C-S, Lee C-L, Chen C-Y (2000) Segment inertial properties of Chinese adults determined from magnetic resonance imaging. Clin Biomech 15(8):559–566.  https://doi.org/10.1016/S0268-0033(00)00016-4CrossRefGoogle Scholar
  7. Clauser CE, McConville JT, Young JW (1969) Weight, volume, and center of mass of segments of the human body. Aerospace Medical Research Laboratory, Wright–Patterson Air Force Base, DaytonCrossRefGoogle Scholar
  8. Dao TT, Marin F, Pouletaut P, Charleux F, Aufaure P, Ho Ba Tho MC (2012) Estimation of accuracy of patient-specific musculoskeletal modelling: case study on a post polio residual paralysis subject. Comput Methods Biomech Biomed Eng 15(7):745–751.  https://doi.org/10.1080/10255842.2011.558086CrossRefGoogle Scholar
  9. Davidson PL, Wilson SJ, Wilson BD, Chalmers DJ (2008) Estimating subject-specific body segment parameters using a 3-dimensional modeller program. J Biomech 41(16):3506–3510.  https://doi.org/10.1016/j.jbiomech.2008.09.021CrossRefGoogle Scholar
  10. Davis RB III, Õunpuu S, Tyburski D, Gage JR (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10(5):575–587.  https://doi.org/10.1016/0167-9457(91)90046-ZCrossRefGoogle Scholar
  11. de Leva P (1996a) Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech 29(9):1223–1230.  https://doi.org/10.1016/0021-9290(95)00178-6
  12. de Leva P (1996b) Joint center longitudinal positions computed from a selected subset of Chandler’s data. J Biomech 29(9):1231–1233.  https://doi.org/10.1016/0021-9290(96)00021-8CrossRefGoogle Scholar
  13. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG (2007) OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54(11):1940–1950.  https://doi.org/10.1109/TBME.2007.901024CrossRefGoogle Scholar
  14. Dempster WT (1955) Space requirements for the seated operator. Wright Air Development Center, Wright-Patterson Air Force Base, DaytonGoogle Scholar
  15. Drillis R, Contini R, Bluestein M (1964) Body segment parameters: a survey of measurement techniques. Artif Limbs 8(1):44–66Google Scholar
  16. Dumas R, Aissaoui R, Mitton D, Skalli W, de Guise JA (2005) Personalized body segment parameters from biplanar low-dose radiography. IEEE Trans Biomed Eng 52(10):1756–1763.  https://doi.org/10.1109/TBME.2005.855711CrossRefGoogle Scholar
  17. Dumas R, Cheze L, Verriest JP (2007a) Adjustments to McConville et al. and Young et al. body segment inertial parameters. J Biomech 40(3):543–553.  https://doi.org/10.1016/j.jbiomech.2006.02.013CrossRefGoogle Scholar
  18. Dumas R, Cheze L, Verriest JP (2007b) Corrigendum to “Adjustments to McConville et al. and Young et al. body segment inertial parameters”. J Biomech 40(7):1651–1652.  https://doi.org/10.1016/j.jbiomech.2006.07.016CrossRefGoogle Scholar
  19. Dumas R, Robert T, Cheze L, Verriest J-P (2015) Thorax and abdomen body segment inertial parameters adjusted from McConville et al. and Young et al. Int Biomech 2(1):113–118.  https://doi.org/10.1080/23335432.2015.1112244CrossRefGoogle Scholar
  20. Durkin JL, Dowling JJ, Andrews DM (2002) The measurement of body segment inertial parameters using dual energy X-ray absorptiometry. J Biomech 35(12):1575–1580.  https://doi.org/10.1016/S0021-9290(02)00227-0CrossRefGoogle Scholar
  21. Ganley KJ, Powers CM (2004) Determination of lower extremity anthropometric parameters using dual energy X-ray absorptiometry: the influence on net joint moments during gait. Clin Biomech 19(1):50–56.  https://doi.org/10.1016/j.clinbiomech.2003.08.002CrossRefGoogle Scholar
  22. Hinrichs RN (1990) Adjustments to the segment center of mass proportions of Clauser et al. (1969). J Biomech 23(9):949–951.  https://doi.org/10.1016/0021-9290(90)90361-6CrossRefGoogle Scholar
  23. Ho Hoang K-L, Mombaur K (2015) Adjustments to de Leva-anthropometric regression data for the changes in body proportions in elderly humans. J Biomech 48(13):3732–3736.  https://doi.org/10.1016/j.jbiomech.2015.08.018CrossRefGoogle Scholar
  24. Jackson JN, Hass CJ, Fregly BJ (2015) Residual elimination algorithm enhancements to improve foot motion tracking during forward dynamic simulations of Gait. J Biomech Eng 137(11):111002.  https://doi.org/10.1115/1.4031418Google Scholar
  25. Jensen RK (1978) Estimation of the biomechanical properties of three body types using a photogrammetric method. J Biomech 11(8-9):349–358.  https://doi.org/10.1016/0021-9290(78)90069-6CrossRefGoogle Scholar
  26. Jovic J, Escande A, Ayusawa K, Yoshida E, Kheddar A, Venture G (2016) Humanoid and human inertia parameter identification using hierarchical optimization. IEEE Trans Robot 32(3):726–735.  https://doi.org/10.1109/TRO.2016.2558190CrossRefGoogle Scholar
  27. Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8(3):383–392.  https://doi.org/10.1002/jor.1100080310CrossRefGoogle Scholar
  28. McConville JT, Churchill TD, Kaleps I, Clauser CE, Cuzzi J (1980) Anthropometric relationships of body and body segment moments of inertia. Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, DaytonCrossRefGoogle Scholar
  29. Mungiole M, Martin PE (1990) Estimating segment inertial properties: comparison of magnetic resonance imaging with existing methods. J Biomech 23(10):1039–1046.  https://doi.org/10.1016/0021-9290(90)90319-XCrossRefGoogle Scholar
  30. Pearsall DJ, Reid G (1994) The study of human body segment parameters in biomechanics. Sports Med 18(2):126–140.  https://doi.org/10.2165/00007256-199418020-00005CrossRefGoogle Scholar
  31. Pearsall DJ, Reid JG, Livingston LA (1996) Segmental inertial parameters of the human trunk as determined from computed tomography. Ann Biomed Eng 24(2):198–210.  https://doi.org/10.1007/BF02667349CrossRefGoogle Scholar
  32. Pillet H, Bonnet X, Lavaste F, Skalli W (2010) Evaluation of force plate-less estimation of the trajectory of the centre of pressure during gait. Comparison of two anthropometric models. Gait Posture 31(2):147–152.  https://doi.org/10.1016/j.gaitpost.2009.09.014CrossRefGoogle Scholar
  33. Plagenhoef S (1971) Patterns of human motion: a cinematographic analysis. Prentice-Hall, Englewood CliffsGoogle Scholar
  34. Reid JG, Jensen RK (1990) Human body segment inertia parameters: a survey and status report. Exerc Sport Sci Rev 18(1)Google Scholar
  35. Sreenivasa M, Chamorro CJG, Gonzalez-Alvarado D, Rettig O, Wolf SI (2016) Patient-specific bone geometry and segment inertia from MRI images for model-based analysis of pathological gait. J Biomech 49(9):1918–1925.  https://doi.org/10.1016/j.jbiomech.2016.05.001CrossRefGoogle Scholar
  36. Taddei F, Martelli S, Valente G, Leardini A, Benedetti MG, Manfrini M, Viceconti M (2012) Femoral loads during gait in a patient with massive skeletal reconstruction. Clin Biomech 27(3):273–280.  https://doi.org/10.1016/j.clinbiomech.2011.09.006CrossRefGoogle Scholar
  37. Tisserand R, Robert T, Dumas R, Chèze L (2016) A simplified marker set to define the center of mass for stability analysis in dynamic situations. Gait Posture 48:64–67.  https://doi.org/10.1016/j.gaitpost.2016.04.032CrossRefGoogle Scholar
  38. Valente G, Pitto L, Testi D, Seth A, Delp SL, Stagni R, Viceconti M, Taddei F (2014) Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? PLoS One 9(11):e112625.  https://doi.org/10.1371/journal.pone.0112625CrossRefGoogle Scholar
  39. Vaughan CL, Andrews JG, Hay JG (1982) Selection of body segment parameters by optimization methods. J Biomech Eng 104(1):38–44.  https://doi.org/10.1115/1.3138301CrossRefGoogle Scholar
  40. Verriest JP (2012) Automatic anthropometric personalization of a digital human model from a set of subject’s photographs. Work 41(Suppl 1):4061–4068.  https://doi.org/10.3233/WOR-2012-0071-4061Google Scholar
  41. Winter DA (2009) Biomechanics and motor control of human movement. Wiley, New YorkCrossRefGoogle Scholar
  42. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – part I: ankle, hip, and spine. J Biomech 35(4):543–548.  https://doi.org/10.1016/S0021-9290(01)00222-6CrossRefGoogle Scholar
  43. Wu G, van der Helm FCT, Veeger HEJ, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Buchholz B (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion – part II: shoulder, elbow, wrist and hand. J Biomech 38(5):981–992.  https://doi.org/10.1016/j.jbiomech.2004.05.042CrossRefGoogle Scholar
  44. Yang F, Pai Y-C (2014) Can sacral marker approximate center of mass during gait and slip-fall recovery among community-dwelling older adults? J Biomech 47(16):3807–3812.  https://doi.org/10.1016/j.jbiomech.2014.10.027CrossRefGoogle Scholar
  45. Yeadon MR, Morlock M (1989) The appropriate use of regression equations for the estimation of segmental inertia parameters. J Biomech 22(6):683–689.  https://doi.org/10.1016/0021-9290(89)90018-3CrossRefGoogle Scholar
  46. Young JW, Chandler RF, Snow CC, Robinette KM, Zehner GF, Lofberg MS (1983) Anthropometric and mass distribution characteristics of the adults female. FAA Civil Aeromedical Institute, Oklaoma CityCrossRefGoogle Scholar
  47. Zatsiorsky VM, Seluyanov VN, Chugunova LG (1990) Methods of determining mass-inertial characteristics of human body segments. In: Chernyi GG, Regirer SA (eds) Contemporary problems of biomechanics. CRC Press, Massachusetts, pp 272–291Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LBMC UMR_T9406Univ Lyon, Université Claude Bernard Lyon 1, IFSTTARLyonFrance
  2. 2.Department of Computer Science, Simulation, Systems Optimization and Robotics GroupTU DarmstadtDarmstadtGermany

Section editors and affiliations

  • William Scott Selbie
    • 1
  1. 1.Has-Motion Inc.KingstonCanada

Personalised recommendations