Skip to main content

Three-Dimensional Reconstruction of the Human Skeleton in Motion

Abstract

This chapter illustrates the conceptual background underlying the in silico reconstruction of the human skeletal motion. A specific focus is given to the experimental and analytical methods that allow acquiring information related to both bone movement and morphology in vivo in the framework of rigid body mechanics. This process involves the definition of global and local frames of reference. Common anatomical and mathematical conventions that are used to describe global bone pose and joint kinematics are illustrated. Issues concerning accuracy and reliability of the estimated quantities when using skin markers and stereophotogrammetry and magneto-inertial measurement units are also dealt with.

Keywords

  • Rigid body mechanics
  • Human movement analysis
  • Bone pose estimation
  • Anatomical calibration
  • Joint kinematics

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Andersen MS, Benoit DL, Damsgaard M, Ramsey DK, Rasmussen J (2010) Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. J Biomech 43:268–273

    CrossRef  Google Scholar 

  • Andersen MS, Damsgaard M, Rasmussen J, Ramsey DK, Benoit DL (2012) A linear soft tissue artefact model for human movement analysis: proof of concept using in vivo data. Gait Posture 35:606–611

    CrossRef  Google Scholar 

  • Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 43:638–649

    CrossRef  Google Scholar 

  • Barré A, Thiran JP, Jolles BM, Theumann N, Aminian K (2013) Soft tissue artifact assessment during treadmill walking in subjects with total knee arthroplasty. IEEE Trans Biomed Eng 60:3131–3140

    CrossRef  Google Scholar 

  • Bell AL, Pedersen DR, Brand RA (1990) A comparison of the accuracy of several hip joint center location prediction methods. J Biomech 23:617–621

    CrossRef  Google Scholar 

  • Benedetti MG, Merlo A, Leardini A (2013) Inter-laboratory consistency of gait analysis measurements. Gait Posture 38:934–939

    CrossRef  Google Scholar 

  • Benoit DL, Damsgaard M, Andersen MS (2015) Surface marker cluster translation, rotation, scaling and deformation: their contribution to soft tissue artefact and impact on knee joint kinematics. J Biomech 48:2124–2129

    CrossRef  Google Scholar 

  • van den Bogert AJ, Smith GD, Nigg BM (1994) In vivo determination of the anatomical axes of the ankle joint complex: an optimization approach. J Biomech 27:1477–1488

    CrossRef  Google Scholar 

  • Bonci T, Camomilla V, Dumas R, Chèze L, Cappozzo A (2015) Rigid and non-rigid geometrical transformations of a marker-cluster and their impact on bone-pose estimation. J Biomech 48:4166–4172

    CrossRef  Google Scholar 

  • Bonnet V, Richard V, Camomilla V, Venture G, Cappozzo A, Dumas R (2017) Joint kinematics estimation using a multi-body kinematics optimisation and an extended Kalman filter, and embedding a soft tissue artefact model. J Biomech (in press)

    Google Scholar 

  • Bouvier B, Duprey S, Claudon L, Dumas R, Savescu A (2015) Upper limb kinematics using inertial and magnetic sensors: comparison of sensor-to-segment calibrations. Sensors 15:18813–18833

    CrossRef  Google Scholar 

  • Camomilla V, Cereatti A, Vannozzi G, Cappozzo A (2006) An optimized protocol for hip joint centre determination using the functional method. J Biomech 39:1096–1106

    CrossRef  Google Scholar 

  • Camomilla V, Bonci T, Dumas R, Chèze L, Cappozzo A (2015) A model of the soft tissue artefact rigid component. J Biomech 48:1752–1759

    CrossRef  Google Scholar 

  • Campbell AC, Lloyd DG, Alderson JA, Elliott BC (2009) MRI development and validation of two new predictive methods of glenohumeral joint center location identification and comparison with established techniques. J Biomech 42:1527–1532

    CrossRef  Google Scholar 

  • Cappozzo A (1984) Gait analysis methodology. Hum Mov Sci 3:27–50

    CrossRef  Google Scholar 

  • Cappozzo A (1991) Three-dimensional analysis of human locomotor acts: experimental methods and associated. Hum Mov Sci 10:589–602

    CrossRef  Google Scholar 

  • Cappozzo A, Catani F, Della Croce U, Leardini A (1995) Position and orientation in space of bones during movement, anatomical frame definition and determination. Clin Biomech 10:171–178

    CrossRef  Google Scholar 

  • Cappozzo A, Cappello A, Della Croce U, Pensalfini F (1997a) Surface-marker cluster design criteria for 3-D bone movement reconstruction. IEEE Trans Biomed Eng 44:1165–1174

    CrossRef  Google Scholar 

  • Cappozzo A, Della Croce U, Lucchetti L (1997b) Gait data, terminology and definition. In: Allard P, Cappozzo A, Lumberg A, Vaughan K (eds) Three-dimensional analysis of human locomotion. Wiley, New York, pp 129–132

    Google Scholar 

  • Cereatti A, Margheritini F, Donati M, Cappozzo A (2010) Is the human acetabulofemoral joint spherical? J Bone Joint Surg (Br) 92:311–314

    CrossRef  Google Scholar 

  • Cereatti A, Bonci T, Akbarshahi M, Aminian K, Barré A, Begon M, Benoit DL, Charbonnier C, Dal Maso F, Fantozzi S, Lin CC, Lu TW, Pandy MG, Stagni R, van den Bogert AJ, Camomilla V (2017) Standardization proposal of soft tissue artefact description for data sharing in human motion measurements. J Biomech. https://doi.org/10.1016/j.jbiomech.2017.02.004

    Google Scholar 

  • Chaibi Y, Cresson T, Aubert B, Hausselle J, Neyret P, Hauger O, de Guise JA, Skalli W (2012) Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Eng 15:457–466

    CrossRef  Google Scholar 

  • Challis JH, Pain MTG (2008) Soft tissue motion influences skeletal loads during impacts. Exerc Sport Sci Rev 36:71–75

    CrossRef  Google Scholar 

  • Charlton IW, Tate P, Smyth P, Roren L (2004) Repeatability of an optimised lower body model. Gait Posture 20:213–221

    CrossRef  Google Scholar 

  • Chiari L, Cappozzo A, Della Croce U, Leardini A (2005) Human movement analysis using stereophotogrammetry. Part 2: experimental errors. Gait Posture 21:197–211

    CrossRef  Google Scholar 

  • Clark T, Hawkins D (2010) Are fixed limb inertial models valid for dynamic simulations of human movement? J Biomech 43:2695–2701

    CrossRef  Google Scholar 

  • Clément J, Dumas R, Hagemesiter N, de Guise JA (2015) Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models. J Biomech 48:3796–3802

    CrossRef  Google Scholar 

  • Clément J, Dumas R, Hagemeister N, de Guise JA (2017) Can generic knee joint models improve the measurement of osteoarthritic knee kinematics during squatting activity? Comput Methods Biomech Biomed Eng 20:94–103

    CrossRef  Google Scholar 

  • Colle F, Lopomo N, Visani A, Zaffagnini S, Marcacci M (2016) Comparison of three formal methods used to estimate the functional axis of rotation: an extensive in-vivo analysis performed on the knee joint. Comput Methods Biomech Biomed Eng 19:484–492

    CrossRef  Google Scholar 

  • Crabolu M, Pani D, Raffo L, Cereatti A (2016) Estimation of the center of rotation using wearable magneto-inertial sensors. J Biomech 16:3928–3933

    CrossRef  Google Scholar 

  • Cutti AG, Giovanardi A, Rocchi L, Davalli A, Sacchetti R (2008) Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med Biol Eng Comput 46:169–178

    CrossRef  Google Scholar 

  • Cutti AG, Ferrari A, Garofalo P, Raggi M, Cappello A, Ferrari A (2010) “Outwalk”: a protocol for clinical gait analysis based on inertial and magnetic sensors. Med Biol Eng Comput 48:17–25

    CrossRef  Google Scholar 

  • Davis RB, Ounpuu S, Tyburskky D, Gage R (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10:575–587

    CrossRef  Google Scholar 

  • De Rosario H, Page A, Besa A, Mata V, Conejero E (2012) Kinematic description of soft tissue artifacts: quantifying rigid versus deformation components and their relation with bone motion. Med Biol Eng Comput 50:1173–1181

    CrossRef  Google Scholar 

  • De Rosario H, Page A, Besa A (2017) Analytical study of the effects of soft tissue artefacts on functional techniques to define axes of rotation. J Biomech. https://doi.org/10.1016/j.jbiomech.2017.01.046

    Google Scholar 

  • Della Croce U, Cappozzo A, Kerrigan DC (1999) Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint kinematics. Med Biol Eng Comput 37:155–161

    CrossRef  Google Scholar 

  • Della Croce U, Leardini A, Chiari L, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark mislocation and its effects on joint kinematics. Gait Posture 21:226–237

    CrossRef  Google Scholar 

  • Donati M, Camomilla V, Vannozzi G, Cappozzo A (2007) Enhanced anatomical calibration in human movement analysis. Gait Posture 26:179–185

    CrossRef  Google Scholar 

  • Donati M, Camomilla V, Vannozzi G, Cappozzo A (2008) Anatomical frame identification and reconstruction for repeatable lower limb joint kinematics estimates. J Biomech 41:2219–2226

    CrossRef  Google Scholar 

  • Dumas R, Camomilla V, Bonci T, Chèze L, Cappozzo A (2014) Generalized mathematical representation of the soft tissue artefact. J Biomech 47:476–481

    CrossRef  Google Scholar 

  • Dumas R, Camomilla V, Bonci T, Chèze L, Cappozzo A (2015) What portion of the soft tissue artefact requires compensation when estimating joint kinematics? J Biomech Eng 137:064502. https://doi.org/10.1115/1.4030363

    CrossRef  Google Scholar 

  • Duprey S, Chèze L, Dumas R (2010) Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization. J Biomech 43:2858–2862

    CrossRef  Google Scholar 

  • Ehrig RM, Taylor WR, Duda GN, Heller MO (2007) A survey of formal methods for determining functional joint axes. J Biomech 40:2150–2157

    CrossRef  Google Scholar 

  • Favre J, Aissaoui R, Jolles BM, de Guise JA, Aminian K (2009) Functional calibration procedure for 3D knee joint angle description using inertial sensors. J Biomech 42:2330–2335

    CrossRef  Google Scholar 

  • Fioretti S, Cappozzo A, Lucchetti L (1997) Joint kinematics. In: Allard P, Cappozzo A, Lumberg A, Vaughan K (eds) Three-dimensional analysis of human locomotion. Wiley, New York, pp 173–189

    Google Scholar 

  • Fraysse F, Thewlis D (2014) Comparison of anatomical, functional and regression methods for estimating the rotation axes of the forearm. J Biomech 47:3488–3493

    CrossRef  Google Scholar 

  • Frigo C, Rabuffetti M, Kerrigan DC, Deming LC, Pedotti A (1998) Functionally oriented and clinically feasible quantitative gait analysis method. Med Biol Eng Comput 36:179–185

    CrossRef  Google Scholar 

  • Gamage SSHU, Lasenby J (2002) New least squares solutions for estimating the average Centre of rotation and the axis of rotation. J Biomech 35:87–93

    CrossRef  Google Scholar 

  • Garling EH, Kapteina BL, Mertens B, Barendregt W, Veeger HEJ, Nelissen RGHH, Valstar ER (2007) Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. J Biomech 40:S18–S24

    CrossRef  Google Scholar 

  • Gasparutto X, Sancisi N, Jacquelin E, Parenti-Castelli V, Dumas R (2015) Validation of a multi-body optimization with knee kinematic models including ligament constraints. J Biomech 48:1141–1146

    CrossRef  Google Scholar 

  • Grimpampi E, Camomilla V, Cereatti A, De Leva P, Cappozzo A (2014) Metrics for describing soft-tissue artefact and its effect on pose, size, and shape of marker clusters. IEEE Trans Biomed Eng 61:362–367

    CrossRef  Google Scholar 

  • Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144

    CrossRef  Google Scholar 

  • Gruber K, Ruder H, Denoth J, Schneider K (1998) A comparative study of impact dynamics: wobbling mass model versus rigid body models. J Biomech 31:439–444

    CrossRef  Google Scholar 

  • Guan S, Gray HA, Keynejad F, Pandy MG (2016) Mobile biplane X-ray imaging system for measuring 3D dynamic joint motion during overground gait. IEEE Trans Med Imaging 35:326–336

    CrossRef  Google Scholar 

  • Halvorsen K (2003) Bias compensated least square estimate of the center of rotation. J Biomech 36:999–1008

    CrossRef  Google Scholar 

  • Halvorsen K, Lesser M, Lundberg A (1999) A new method for estimating the axis of rotation and the center of rotation. J Biomech 32:1221–1227

    CrossRef  Google Scholar 

  • Hara R, McGinley J, Briggs C, Baker R, Sangeux M (2016) Predicting the location of the hip joint centres, impact of age group and sex. Sci Rep 6:37707

    CrossRef  Google Scholar 

  • Harrington ME, Zavatsky AB, Lawson SE, Yuan Z, Theologis TN (2007) Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging. J Biomech 40:595–602

    CrossRef  Google Scholar 

  • Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8:383–392

    CrossRef  Google Scholar 

  • Kainz H, Carty CP, Modenese L, Boyd RN, Lloyd DG (2015) Estimation of the hip joint centre in human motion analysis: a systematic review. Clin Biomech 30:319–329

    CrossRef  Google Scholar 

  • Lamberto G, Martelli S, Cappozzo A, Mazzà C (2016) To what extent is joint and muscle mechanics predicted by musculoskeletal models sensitive to soft tissue artefacts? J Biomech. https://doi.org/10.1016/j.jbiomech.2016.07.042i

    Google Scholar 

  • Leardini A, Cappozzo A, Catani F, Toksvig-Larsen S, Petitto A, Sforza V, Cassanelli G, Giannini S (1999) Validation of a functional method for the estimation of hip joint centre location. J Biomech 32:99–103

    CrossRef  Google Scholar 

  • Leardini A, Chiari L, Cappozzo A, Della Croce U (2005) Human movement analysis using stereophotogrammetry. Part 3: soft tissue artifact assessment and compensation. Gait Posture 21:212–225

    CrossRef  Google Scholar 

  • Leardini A, Sawacha Z, Paolini G, Ingrosso S, Nativo R, Benedetti MG (2007) A new anatomically based protocol for gait analysis in children. Gait Posture 26:560–571

    CrossRef  Google Scholar 

  • Lempereur M, Leboeuf F, Brochard S, Rousset J, Burdin V, Rémy-Néris O (2010) In vivo estimation of the glenohumeral joint center by functional methods: accuracy and repeatability assessment. J Biomech 43:370–374

    CrossRef  Google Scholar 

  • Li K, Zheng L, Tashman S, Zhang X (2012) The inaccuracy of surface-measured model-derived tibiofemoral kinematics. J Biomech 45:2719–2723

    CrossRef  Google Scholar 

  • Liu W, Nigg BM (2000) A mechanical model to determine the influence of masses and mass distribution on the impact force during running. J Biomech 33:219–224

    CrossRef  Google Scholar 

  • Lu TW, O’Connor JJ (1999) Bone position estimation from skin marker coordinates using global optimization with joint constraints. J Biomech 32:129–134

    CrossRef  Google Scholar 

  • Luinge HJ, Veltink PH, Baten CTM (2007) Ambulatory measurement of arm orientation. J Biomech 40:78–85

    CrossRef  Google Scholar 

  • Masum MA, Pickering MR, Lambert AJ, Scarvell JM, Smith PN (2016) Multi-slice ultrasound image calibration of an intelligent skin-marker for soft tissue artefact compensation. J Biomech. https://doi.org/10.1016/j.jbiomech.2016.12.030

    Google Scholar 

  • McGinnis RS, Perkins NC (2013) Inertial sensor based method for identifying spherical joint center of rotation. J Biomech 46:2546–2549

    CrossRef  Google Scholar 

  • Melhem E, Assi A, El Rachkidi R, Ghanem I (2016) EOS® biplanar X-ray imaging: concept, developments, benefits, and limitations. J Child Orthop 10:1–14

    CrossRef  Google Scholar 

  • Pain MTG, Challis JH (2001) High resolution determination of body segment inertial parameters and their variation due to soft tissue motion. J Appl Biomech 17:326–334

    CrossRef  Google Scholar 

  • Paul JP (1992) Terminology and units. Deliverable n. 4, C.E.C. Program AIM, Project A-2002, CAMARC-II

    Google Scholar 

  • Piazza SJ, Erdemir A, Okita N, Cavanagh PR (2004) Assessment of the functional method of hip joint center location to reduced range of hip motion. J Biomech 37:349–356

    CrossRef  Google Scholar 

  • Picerno P, Cereatti A, Cappozzo A (2008) Joint kinematics estimate using wearable inertial and magnetic sensing modules. Gait Posture 28:588–595

    CrossRef  Google Scholar 

  • Pierrynowski MR, Ball KA (2009) Oppugning the assumptions of spatial averaging of segment and joint orientations. J Biomech 42:375–378

    CrossRef  Google Scholar 

  • Quijano S, Serrurier A, Aubert B, Laporte S, Thoreux P, Skalli W (2013) Three-dimensional reconstruction of the lower limb from biplanar calibrated radiographs. Med Eng Phys 35:1703–1712

    CrossRef  Google Scholar 

  • Rabuffetti M, Ferrarin M, Mazzoleni P, Benvenuti F, Pedotti A (2003) Optimised procedure for the calibration of the force platform location. Gait Posture 17:75–80

    CrossRef  Google Scholar 

  • Reinbolt JA, Schutte JF, Fregly BJ, Koh B, Haftka RT, George AD, Mitchell KH (2005) Determination of patient-specific multi-joint kinematic models through two-level optimization. J Biomech 38:621–626

    CrossRef  Google Scholar 

  • Richard V, Lamberto G, Lu TW, Cappozzo A, Dumas R (2016) Knees kinematics estimation using multi-body optimisation embedding a knee joint stiffness matrix: a feasibility study. PLoS ONE. https://doi.org/10.1371/journal.pone.01570

    Google Scholar 

  • Riddick RC, Kuo AD (2016) Soft tissues store and return mechanical energy in human running. J Biomech 49:436–441

    CrossRef  Google Scholar 

  • Scheys L, Desloovere K, Spaepen A, Suetens P, Jonkers I (2011) Calculating gait kinematics using MR-based kinematic models. Gait Posture 33:158–164

    CrossRef  Google Scholar 

  • Seel T, Schauer T, Raisch J (2012) Joint axis and position estimation from inertial measurement data by exploiting kinematic constraints. In: Proceedings of IEEE international conference on control applications, Dubrovnik, Croatia, pp 45–49

    Google Scholar 

  • Seidel GK, Marchinda DM, Dijkers M, Soutas-Little RW (1995) Hip joint center location from palpable bony landmarks – a cadaver study. J Biomech 28:995–998

    CrossRef  Google Scholar 

  • Sheehan FT (2010) The instantaneous helical axis of the subtalar and talocrural joints: a non-invasive in vivo dynamic study. J Foot Ankle Res 3:13. https://doi.org/10.1186/1757-1146-3-13

    CrossRef  Google Scholar 

  • Sholukha V, Van Sint JS, Snoeck O, Salvia P, Moiseev F, Rooze M (2009) Prediction of joint center location by customizable multiple regressions: application to clavicle, scapula and humerus. J Biomech 42:319–324

    CrossRef  Google Scholar 

  • Shuster MD (1993) A survey of attitude representations. J Astronaut Sci 41:439–517

    MathSciNet  Google Scholar 

  • Soderkvist I, Wedin PA (1993) Determining the movements of the skeleton using well-configured markers. J Biomech 26:1473–1477

    CrossRef  Google Scholar 

  • Stagni R, Leardini A, Cappozzo A, Benedetti MG, Cappello A (2000) Effects of hip joint centre mislocation on gait analysis results. J Biomech 33:1479–1487

    CrossRef  Google Scholar 

  • Van Sint JS, Hilal I, Salvia P, Sholukha V, Poulet P, Kirokoya I, Rooze M (2003) Data representation for joint kinematics simulation of the lower limb within an educational context. Med Eng Phys 25:213–220

    CrossRef  Google Scholar 

  • Wakeling JM, Nigg BM (2001) Soft-tissue vibrations in the quadriceps measured with skin mounted transducers. J Biomech 34:539–543

    CrossRef  Google Scholar 

  • Woltring HJ (1994) 3-D attitude representation of human joints, a standardisation proposal. J Biomech 27:1399–1414

    CrossRef  Google Scholar 

  • Wu G, Cavanagh PR (1995) ISB recommendations for standardization in the reporting of kinematic data. J Biomech 28:1257–1261

    CrossRef  Google Scholar 

  • Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – part I, ankle, hip, and spine. J Biomech 35:543–548

    CrossRef  Google Scholar 

  • Yin L, Chen K, Guo L, Cheng L, Wang F, Yang L (2015) Identifying the functional flexion-extension axis of the knee: an in-vivo kinematics study. PLoS ONE 10:e0128877

    CrossRef  Google Scholar 

  • Zelik KE, Kuo AD (2010) Human walking isn’t all hard work: evidence of soft tissue contributions to energy dissipation and return. J Exp Biol 213:4257–4264

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Camomilla .

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Camomilla, V., Cappozzo, A., Vannozzi, G. (2018). Three-Dimensional Reconstruction of the Human Skeleton in Motion. In: Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-14418-4_146

Download citation