Advertisement

Physically Based Character Animation Synthesis

Reference work entry

Abstract

Understanding and synthesizing human motions are an important scientific quest. It also has broad applications in computer animation. Research on physically based character animation in the last two decades has achieved impressive advancement. A large variety of human activities are synthesized automatically in a physically simulated environment. The two key components of physically based character animation are (1) physical simulation that models the dynamics of humans and their environment and (2) controller optimization that optimizes the character’s motions in the simulation. This approach has an inherent realism because we all live in a world that obeys physical laws, and we evolved to survive in this physical environment. In this chapter, we will review the state of the art of physically based character animation, introduce a few established methods in physical simulation and motor control, and discuss promising future directions.

Keywords

Character animation Physical simulation Trajectory optimization Reinforcement learning 

References

  1. Abe Y, da Silva M, Popović J (2007) Multiobjective control with frictional contacts. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. SCA”07. pp 249–258Google Scholar
  2. Andrews S, Kry P (2013) Goal directed multi-finger manipulation: control policies and analysis. Comput Graph 37(7):830–839CrossRefGoogle Scholar
  3. Bai Y, Liu CK (2014) Coupling cloth and rigid bodies for dexterous manipulation. In: Proceedings of the seventh international conference on motion in games. MIG”14. ACM, pp 139–145Google Scholar
  4. Bharaj G, Coros S, Thomaszewski B, Tompkin J, Bickel B, Pfister H (2015) Computational design of walking automata. In: Proceedings of the 14th ACM SIGGRAPH/eurographics symposium on computer animation. SCA”15. ACM, pp 93–100Google Scholar
  5. Clegg A, Tan J, Turk G, Liu CK (2015) Animating human dressing. ACM Trans Graph 34(4):116:1–116:9CrossRefGoogle Scholar
  6. Coros S, Beaudoin P, van de Panne M (2009) Robust task-based control policies for physics-based characters. ACM Trans Graph 28(5):170:1–170:9CrossRefGoogle Scholar
  7. Coros S, Beaudoin P, van de Panne M (2010) Generalized biped walking control. ACM Trans Graph 29(4):130, Article 130CrossRefGoogle Scholar
  8. Coros S, Karpathy A, Jones B, Reveret L, van de Panne M (2011) Locomotion skills for simulated quadrupeds. ACM Trans Graph 30(4):59CrossRefGoogle Scholar
  9. Da Silva M, Abe Y, Popović J (2008) Interactive simulation of stylized human locomotion. In: ACM SIGGRAPH 2008 Papers. SIGGRAPH”08. ACM, pp 82:1–82:10Google Scholar
  10. DiLorenzo PC, Zordan VB, Sanders BL (2008) Laughing out loud: control for modeling anatomically inspired laughter using audio. In: ACM SIGGRAPH Asia 2008 papers. SIGGRAPH Asia”08. pp 125:1–125:8Google Scholar
  11. Erez T, Tassa Y, Todorov E (2015) Simulation tools for model-based robotics: comparison of bullet, havok, mujoco, ode and physx. In: ‘ICRA’, IEEE. pp 4397–4404Google Scholar
  12. Erleben K (2007) Velocity-based shock propagation for multibody dynamics animation. ACM Transactions on Graphics (TOG), 26(2), Article No. 12.Google Scholar
  13. Geijtenbeek T, van de Panne M, van der Stappen AF (2013) Flexible muscle-based locomotion for bipedal creatures. ACM Trans Graph 32(6)Google Scholar
  14. Ha S, Ye Y, Liu CK (2012) Falling and landing motion control for character animation. ACM Trans Graph 31(6):1CrossRefGoogle Scholar
  15. Hansen N (2006) The cma evolution strategy: a comparing review. In: Towards a new evolutionary computation. Springer, New York, pp 75–102CrossRefGoogle Scholar
  16. Hinton GE (2012) A practical guide to training restricted Boltzmann machines. In: Montavon G, Orr GB, Mller K-R (eds) Neural networks: tricks of the trade, 2nd edn, Lecture notes in computer science. Springer, New York, pp 599–619CrossRefGoogle Scholar
  17. Hodgins JK, Wooten WL, Brogan DC, O’Brien JF (1995) Animating human athletics. In: SIGGRAPH. pp 71–78Google Scholar
  18. Jain S, Ye Y, Liu CK (2009) Optimization-based interactive motion synthesis. ACM Trans Graph 28(1):1–10CrossRefGoogle Scholar
  19. Kaelbling LP, Littman ML, Moore AP (1996) Reinforcement learning: a survey. J Artif Intell Res 4:237–285Google Scholar
  20. Kaufman DM, Sueda S, James DL, Pai DK (2008) Staggered projections for frictional contact in multibody systems. ACM Trans Graph 27:164:1–164:11CrossRefGoogle Scholar
  21. Kim J, Pollard NS (2011) Direct control of simulated non-human characters. IEEE Comput Graph Appl 31(4):56–65CrossRefGoogle Scholar
  22. Kober J, Bagnell JAD, Peters J (2013) Reinforcement learning in robotics: a survey. Int J Robot Res 32:1238CrossRefGoogle Scholar
  23. Kwatra N, Wojtan C, Carlson M, Essa I, Mucha P, Turk G (2009) Fluid simulation with articulated bodies. IEEE Trans Vis Comput Graph 16(1):70–80CrossRefGoogle Scholar
  24. Kwon T, Hodgins J (2010) Control systems for human running using an inverted pendulum model and a reference motion capture sequence. In: Proceedings of the 2010 ACM SIGGRAPH/eurographics symposium on computer animation. SCA”10. Eurographics Association, pp 129–138Google Scholar
  25. Laszlo J, van de Panne M, Fiume E (1996) Limit cycle control and its application to the animation of balancing and walking. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques. SIGGRAPH”96. ACM, pp 155–162Google Scholar
  26. Lee S-H, Terzopoulos D (2006) Heads up! Biomechanical modeling and neuromuscular control of the neck. ACM Trans Graph 25(3):1188–1198CrossRefGoogle Scholar
  27. Lee S-H, Sifakis E, Terzopoulos D (2009) Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans Graph 28:99:1–99:17Google Scholar
  28. Levine S, Wang JM, Haraux A, Popović Z, Koltun V (2012) Continuous character control with low-dimensional embeddings. ACM Trans Graph 31(4):28:1–28:10CrossRefGoogle Scholar
  29. Liu CK (2009) Dextrous manipulation from a grasping pose. ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2009, 28(3), Article No. 59.Google Scholar
  30. Liu CK, Jain S (2012) A short tutorial on multibody dynamics, Technical report GIT-GVU-15-01-1, Georgia Institute of Technology, School of Interactive ComputingGoogle Scholar
  31. Liu CK, Popović Z (2002) Synthesis of complex dynamic character motion from simple animations. In: Proceedings of the 29th annual conference on computer graphics and interactive techniques. SIGGRAPH”02. ACM, pp 408–416Google Scholar
  32. Liu L, Yin K, van de Panne M, Shao T, Xu W (2010) Sampling-based contact-rich motion control. ACM Trans Graph 29(4), Article 128Google Scholar
  33. Lloyd J (2005) Fast implementation of Lemke’s algorithm for rigid body contact simulation. In: Proceedings of the 2005 I.E. international conference on robotics and automation. ICRA 2005. pp 4538–4543Google Scholar
  34. Megaro V, Thomaszewski B, Nitti M, Hilliges O, Gross M, Coros S (2015) Interactive design of 3d-printable robotic creatures. ACM Trans Graph 34(6):216:1–216:9CrossRefGoogle Scholar
  35. Mordatch I, de Lasa M, Hertzmann A (2010) Robust physics-based locomotion using low-dimensional planning. In: ACM SIGGRAPH 2010 papers. SIG- GRAPH”10. ACM, pp 71:1–71:8Google Scholar
  36. Mordatch I, Popović Z, Todorov E (2012) Contact-invariant optimization for hand manipulation. In: Proceedings of the ACM SIGGRAPH/eurographics symposium on computer animation. SCA”12. Eurographics Association, pp 137–144Google Scholar
  37. Mordatch I, Wang JM, Todorov E, Koltun V (2013) Animating human lower limbs using contact-invariant optimization. ACM Trans Graph 32(6):203:1–203:8CrossRefGoogle Scholar
  38. Muico U, Lee Y, Popović J, Popović Z (2009) Contact-aware nonlinear control of dynamic characters. In: ACM SIGGRAPH 2009 papers. SIGGRAPH”09. ACM, pp 81:1–81:9Google Scholar
  39. Ng AY, Jordan M (2000) Pegasus: a policy search method for large MDPs and POMDPs. In: Proceedings of the sixteenth conference on uncertainty in artificial intelligence, UAI’00. Morgan Kaufmann Publishers, San Francisco, pp 406–415Google Scholar
  40. Ng AY, Russell SJ (2000) Algorithms for inverse reinforcement learning. In: Proceedings of the seventeenth international conference on machine learning, ICML”00. Morgan Kaufmann Publishers, San Francisco, pp 663–670Google Scholar
  41. Otaduy MA, Tamstorf R, Steinemann D, Gross M (2009) Implicit contact handling for deformable objects. Comput Graph Forum (Proc. of Euro- graphics) 28(2):559-568Google Scholar
  42. Pratt JE, Chew C-M, Torres A, Dilworth P, Pratt GA (2001) Virtual model control: an intuitive approach for bipedal locomotion. Int J Robot Res 20(2):129–143CrossRefGoogle Scholar
  43. Si W, Lee S-H, Sifakis E, Terzopoulos D (2014) Realistic biomechanical simulation and control of human swimming. ACM Trans Graph 34(1):10:1–10:15CrossRefGoogle Scholar
  44. Sueda S, Kaufman A, Pai DK (2008) Musculotendon simulation for hand animation. ACM Trans Graph 27:83:1–83:8CrossRefGoogle Scholar
  45. Tan J, Siu K, Liu CK (2012a) Contact handling for articulated rigid bodies using lcp. Technical report GIT-GVU-15-01-2, Georgia Institute of Technology, School of Interactive ComputingGoogle Scholar
  46. Tan J, Turk G, Liu CK (2012a) Soft body locomotion. ACM Trans Graph 31(4):26:1–26:11CrossRefGoogle Scholar
  47. Tan J, Gu Y, Liu CK, Turk G (2014) Learning bicycle stunts. ACM Trans Graph 33(4):50:1–50:12CrossRefGoogle Scholar
  48. Thomas F, Johnston O (1995) The illusion of life: Disney animation, Hyperion. Abbeville Press, New York, NY.Google Scholar
  49. Todorov E (2006) Optimal control theory. In: Bayesian brain: probabilistic approaches to neural coding. MIT Press, Cambridge, MA. pp 269–298Google Scholar
  50. Treuille A, Lee Y, Popović Z (2007) Near-optimal character animation with continuous control. ACM Trans Graph 26(3):7CrossRefGoogle Scholar
  51. Tsai Y-Y, Lin W-C, Cheng KB, Lee J, Lee T-Y (2010) Real-time physics-based 3D biped character animation using an inverted pendulum model. IEEE Trans Vis Comput Graph 16(2):325–337CrossRefGoogle Scholar
  52. Tsang W, Singh K, Eugene F (2005) Helping hand: an anatomically accurate inverse dynamics solution for unconstrained hand motion. In: Proceedings of the 2005 ACM SIGGRAPH/eurographics symposium on computer animation. SCA”05. pp 319–328Google Scholar
  53. Vincent P, Larochelle H, Bengio Y, Manzagol P-A (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning. ICML”08. ACM, pp 1096–1103Google Scholar
  54. Wampler K, Popović Z (2009) Optimal gait and form for animal locomotion. ACM Trans Graph 28(3):60:1–60:8CrossRefGoogle Scholar
  55. Wang JM, Fleet DJ, Hertzmann A (2009) Optimizing walking controllers. ACM Trans Graph 28(5):168:1–168:8Google Scholar
  56. Wang JM, Fleet DJ, Hertzmann A (2010) Optimizing walking controllers for uncertain inputs and environments. ACM Trans Graph 29(4):73:1–73:8Google Scholar
  57. Wang JM, Hamner SR, Delp SL, Koltun V (2012) Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Trans Graph 31(4):25:1–25:11Google Scholar
  58. Witkin A, Kass M (1988) Spacetime constraints. In: Proceedings of the 15th annual Conference on computer graphics and interactive techniques. SIG- GRAPH”88. ACM, pp 159–168Google Scholar
  59. Wu J-C, Popović Z (2010) Terrain-adaptive bipedal locomotion control. In: ACM SIGGRAPH 2010 papers. SIGGRAPH”10. ACM, pp 72:1–72:10Google Scholar
  60. Ye Y, Liu CK (2010) Optimal feedback control for character animation using an abstract model. In: SIGGRAPH”10: ACM SIGGRAPH 2010 papers. ACM, New York, pp 1–9Google Scholar
  61. Ye Y, Liu CK (2012) Synthesis of detailed hand manipulations using contact sampling. ACM Trans Graph 31(4):41:1–41:10CrossRefGoogle Scholar
  62. Yin K, Loken K, van de Panne M (2007) SIMBICON: simple biped locomotion control. In: ACM SIGGRAPH 2007 papers. SIGGRAPH”07Google Scholar
  63. Yin K, Coros S, Beaudoin P, van de Panne M (2008) Continuation methods for adapting simulated skills. ACM Trans Graph 27(3):81CrossRefGoogle Scholar
  64. Zordan VB, Celly B, Chiu B, DiLorenzo PC (2006) Breathe easy: model and control of human respiration for computer animation. Graph Models 68:113–132CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations