Skip to main content

Data-Driven Character Animation Synthesis

  • Reference work entry
  • First Online:
  • 665 Accesses

Abstract

In this article, we describe about data-driven character motion synthesis for use mainly on a full-body skeleton structure. Due to the simplicity of capturing motion nowadays, the main issue for animating characters is how to reduce the cost of applying such motion to the characters and how to recycle the motion for interactive motion synthesis. An additional topic of interest is how to convert the style of the movements while preserving the context of the motion. In this article, we primarily cover machine learning techniques that can be useful for such purposes.

This is a preview of subscription content, log in via an institution.

References

  • Al-Asqhar RA, Komura T, Choi MG (2013) Relationship descriptors for interactive motion adaptation. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, New York, pp 45–53

    Google Scholar 

  • Alexa M, Müller W (2000) Representing animations by principal components. Comput Graphics Forum 19:411–418. Wiley Online Library

    Article  Google Scholar 

  • Arikan O, Forsyth DA (2002) Interactive motion generation from examples. ACM Trans Graph 21:483–490. ACM

    Article  MATH  Google Scholar 

  • Barber D (2012) Bayesian reasoning and machine learning. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bruderlin A, Williams L (1995) Motion signal processing. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, ACM, New York, pp 97–104

    Google Scholar 

  • Chai J, Hodgins JK (2005) Performance animation from low-dimensional control signals. ACM Trans Graph 24:686–696. ACM

    Article  Google Scholar 

  • Clavet S (2016) Motion matching and the road to next-gen animation. Game Developers Conference (GDC). San Francisco, California, pp 14–18

    Google Scholar 

  • Fragkiadaki K, Levine S, Felsen P, Malik J (2015) Recurrent network models for human dynamics. In: Proceedings of the IEEE international conference on computer vision, Santiago, 7–13 Dec 2015, pp 4346–4354

    Google Scholar 

  • Gatys LA, Ecker AS, Bethge M (2015) A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576

    Google Scholar 

  • Gleicher M (1997) Motion editing with spacetime constraints. In: Proceedings of the 1997 symposium on interactive 3D graphics, ACM, New York, pp 139–ff

    Google Scholar 

  • Gleicher M (1998) Retargetting motion to new characters. In: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, ACM, New York, pp 33–42

    Google Scholar 

  • Gleicher M, Shin HJ, Kovar L, Jepsen A (2008) Snap-together motion: assembling run-time animations. In: ACM SIGGRAPH 2008 classes, ACM, New York, p 52

    Google Scholar 

  • Grochow K, Martin SL, Hertzmann A, Popović’ Z (2004) Style-based inverse kinematics. In ACM transactions on graphics (TOG) ACM, 23(3), pp 522–531

    Google Scholar 

  • Heck R, Gleicher M (2007) Parametric motion graphs. In: Proceedings of the 2007 symposium on interactive 3D graphics and games, ACM, New York, pp 129–136

    Google Scholar 

  • Ho ES, Komura T, Tai CL (2010) Spatial relationship preserving character motion adaptation. ACM Trans Graph 29(4):33

    Article  Google Scholar 

  • Holden D, Saito J, Komura, T (2015a) Learning an inverse rig mapping for character animation. In: Proceedings of the 14th ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, pp 165–173

    Google Scholar 

  • Holden D, Saito J, Komura T, Joyce T (2015b) Learning motion manifolds with convolutional autoencoders. In: SIGGRAPH Asia 2015 Technical Briefs, ACM, p. 18

    Google Scholar 

  • Holden D, Saito J, Komura T (2016) A deep learning framework for character motion synthesis and editing. ACM Trans Graph 35(4):1

    Article  Google Scholar 

  • Hsu E, Pulli K, Popovic J (2005) Style translation for human motion. ACM Trans Graph 24(3):1082–1089

    Article  Google Scholar 

  • Ikemoto L, Arikan O, Forsyth D (2009) Generalizing motion edits with Gaussian processes. ACM Trans Graph 28(1):1

    Article  Google Scholar 

  • Kim T, Shakhnarovich G, Urtasun R (2010) Sparse coding for learning interpretable spatiotemporal primitives. In: Advances in Neural Information Processing Systems. Neural Information Processing Systems Foundation, Vancouver, pp 1117–1125

    Google Scholar 

  • Kovar L, Gleicher M (2004) Automated extraction and parameterization of motions in large data sets. ACM Trans Graph 23(3):559–568

    Article  Google Scholar 

  • Kovar L, Gleicher M, Pighin F (2002) Motion graphs. ACM Trans Graph 21:473–482. ACM

    Article  Google Scholar 

  • Kulpa R, Multon F, Arnaldi B (2005) Morphology-independent representation of motions for interactive human-like animation. Comput Graphics Forum 24:343–351. Wiley Online Library

    Article  Google Scholar 

  • Kwon T, Shin SY (2005) Motion modeling for on-line locomotion synthesis. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, New York, pp 29–38

    Google Scholar 

  • Lau M, Kuffner JJ (2005) Behavior planning for character animation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation, New York, ACM, pp 271–280

    Google Scholar 

  • Lau M, Kuffner JJ (2006) Precomputed search trees: planning for interactive goal-driven animation. ACM SIGGRAPH / Eurographics symposium on computer animation, Eurographics Association, Vienna, pp 299–308

    Google Scholar 

  • Lawrence ND (2004) Gaussian process latent variable models for visualisation of high dimensional data. Adv Neural Inf Proces Syst 16(3):329–336

    Google Scholar 

  • Lawrence N (2005) Probabilistic non-linear principal component analysis with Gaussian process latent variable models. J Mach Learn Res 6(2):1783–1816

    MathSciNet  MATH  Google Scholar 

  • Lee J, Chai J, Reitsma PS, Hodgins JK, Pollard NS (2002a) Interactive control of avatars animated with human motion data. ACM Trans Graph 21:491–500. ACM

    Google Scholar 

  • Lee J, Chai J, Reitsma PSA, Hodgins JK, Pollard NS (2002b) Interactive control of avatars animated with human motion data. In: Proceedings of the 29th annual conference on computer graphics and interactive techniques, SIGGRAPH ‘02, ACM, New York, pp 491–500

    Google Scholar 

  • Lee Y, Wampler K, Bernstein G, Popović J, Popović Z (2010) Motion fields for interactive character locomotion. ACM Trans Graph 29:138. ACM

    Google Scholar 

  • Levine S, Wang JM, Haraux A, Popović Z, Koltun V (2012) Continuous character control with low-dimensional embeddings. ACM Trans Graph 31(4):28

    Article  Google Scholar 

  • Lewis JP, Cordner M, Fong N (2000) Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: SIGGRAPH ‘00: Proceedings of the 27th annual conference on computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, pp 165–172. https://doi.org/10.1145/344779.344862

  • Min J, Chai J (2012) Motion graphs++: a compact generative model for semantic motion analysis and synthesis. ACM Trans Graph 31(6):153

    Article  Google Scholar 

  • Min J, Liu H, Chai J (2010) Synthesis and editing of personalized stylistic human motion. In: Proceedings of the 2010 ACM SIGGRAPH symposium on interactive 3D graphics and games, ACM, New York, pp 39–46

    Google Scholar 

  • Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533

    Article  Google Scholar 

  • Mukai T (2011) Motion rings for interactive gait synthesis. In: Symposium on interactive 3D graphics and games, ACM, New York, pp 125–132

    Google Scholar 

  • Mukai T, Kuriyama S (2005) Geostatistical motion interpolation. ACM Trans Graph 24(3):1062–1070. https://doi.org/10.1145/1073204.1073313

    Article  Google Scholar 

  • Park SI, Shin HJ, Shin SY (2002) On-line locomotion generation based on motion blending. In: SCA ‘02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on computer animation, ACM Press, New York, pp 105–111. https://doi.org/10.1145/545261.545279

  • Peng XB, Berseth G, van de Panne M (2016) Terrain-adaptive locomotion skills using deep reinforcement learning. ACM Trans Graph 35(4):81

    Google Scholar 

  • Pullen K, Bregler C (2002) Motion capture assisted animation: texturing and synthesis. ACM Trans Graph 21:501–508. ACM

    Article  Google Scholar 

  • Rose C, Cohen MF, Bodenheimer B (1998) Verbs and adverbs: multidimensional motion interpolation. IEEE Comput Graph Appl 18(5):32–40. https://doi.org/10.1109/38.708559

    Article  Google Scholar 

  • Rose III CF, Sloan PPJ, Cohen MF (2001) Artist-directed inverse-kinematics using radial basis function interpolation. Comput Graphics Forum 20:239–250. Wiley Online Library

    Article  Google Scholar 

  • Shapiro A, Cao Y, Faloutsos P (2006) Style components. In: Proceedings of graphics interface 2006, Canadian Information Processing Society, Toronto, pp 33–39

    Google Scholar 

  • Shin HJ, Oh HS (2006) Fat graphs: constructing an interactive character with continuous controls. In: SCA ‘06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on computer animation. Eurographics Association, Aire-la-Ville, pp 291–298

    Google Scholar 

  • Sloan PPJ, Rose III CF, Cohen MF (2001) Shape by example. In: Proceedings of the 2001 symposium on interactive 3D graphics, ACM, New York, pp 135–143

    Google Scholar 

  • Tautges J, Zinke A, Krüger B, Baumann J, Weber A, Helten T, Müller M, Seidel HP, Eberhardt B (2011) Motion reconstruction using sparse accelerometer data. ACM Trans Graph 30(3):18

    Article  Google Scholar 

  • Unuma M, Anjyo K, Takeuchi R (1995) Fourier principles for emotion-based human figure animation. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, ACM, Los Angeles, pp 91–96

    Google Scholar 

  • Urtasun R, Glardon P, Boulic R, Thalmann D, Fua P (2004) Style-based motion synthesis. Comput Graphics Forum 23:799–812. Wiley Online Library

    Article  Google Scholar 

  • Wang J, Hertzmann A, Blei DM (2005) Gaussian process dynamical models. Adv Neural Inf Proces Syst 18:1441–1448

    Google Scholar 

  • Witkin A, Popovic Z (1995) Motion warping. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, ACM, Los Angeles, pp 105–108

    Google Scholar 

  • Xia S, Wang C, Chai J, Hodgins J (2015) Realtime style transfer for unlabeled heterogeneous human motion. ACM Trans Graph 34(4):119

    Article  Google Scholar 

  • Xiao J, Feng Y, Ji M, Yang X, Zhang JJ, Zhuang Y (2015) Sparse motion bases selection for human motion denoising. Signal Process 110:108–122

    Article  Google Scholar 

  • Yumer ME, Mitra NJ (2016) Spectral style transfer for human motion between independent actions. ACM Trans Graph 35(4):137:1–137:8. https://doi.org/10.1145/2897824.2925955

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Komura .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Komura, T., Habibie, I., Schwarz, J., Holden, D. (2018). Data-Driven Character Animation Synthesis. In: Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-14418-4_10

Download citation

Publish with us

Policies and ethics