Skip to main content

Fuel Efficiency in Transportation Systems

  • Reference work entry
  • First Online:
  • 5335 Accesses

Abstract

Transportation of people and of goods plays an important role in modern life. It is a major source of anthropogenic CO2. This chapter, after introducing some fundamentals of natural climate fluctuations as described by Milankovitch cycles, describes the causes and consequences of man-made climate change and the motivation for increased fuel efficiency in transportation systems. To this end, contemporary and future ground-based and air-based transportation technologies are discussed. It is shown that concepts that were already given up, such as turbine-driven cars, might be worthwhile for further studies. Alternative fuels such as hydrogen, ethanol and biofuels, and alternative power sources, e.g., compressed air engines and fuel cells, are presented from various perspectives. The chapter also addresses the contribution of CO2 emissions of the supply chain and over the entire life cycle for different transportation technologies.

John M. Seiner: deceased

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agresti F (2010) Hydrogen storage in metal and complex hydrides: from possible niche applications towards promising high performance systems. VDM Verlag Dr. Müller, Saarbrücken. ISBN 9783639313444

    Google Scholar 

  • Åhman M (2001) Primary energy efficiency of alternative powertrains in vehicles. Energy 26(11):973–989 (Original Research Article)

    Article  Google Scholar 

  • Åkerman J, Höjer M (2006) How much transport can the climate stand? – Sweden on a sustainable path in 2050. Energy Policy 34(14):1944–1957

    Article  Google Scholar 

  • Allan T (2011) Virtual water: tackling the threat to our planet's most precious resource. IB Tauris, London. ISBN 978–184511984

    Google Scholar 

  • Ally J, Pryor T (2007) Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems. J Power Source 170(2):401–411

    Article  Google Scholar 

  • Azar C, Lindgren K, Andersson BA (2003) Global energy scenarios meeting stringent CO2 constraints – cost-effective fuel choices in the transportation sector. Energy Policy 31(10):961–976

    Article  Google Scholar 

  • Babikian R, Lukachko SP, Waitz IA (2002) The historical fuel efficiency characteristics of regional aircraft from technological, operational, and cost perspectives. J Air Transp Manag 8(6):389–400

    Article  Google Scholar 

  • Cadarso M, López L-A, Gómez N, Tobarra M (2010) CO2 emissions of international freight transport and offshoring: measurement and allocation. Ecol Econ 69(8):1682–1694

    Article  Google Scholar 

  • Chen H, Ding Y, Li Y, Zhang X, Tan C (2011) Air fuelled zero emission road transportation: a comparative study. Appl Energy 88(1):337–342

    Article  Google Scholar 

  • Chester MV, Horvath A (2009) Environmental assessment of passenger transportation should include infrastructure and supply chains. Environ Res Lett 4:024008

    Article  Google Scholar 

  • Chèze B, Gastineau P, Chevallier J (2011) Forecasting world and regional aviation jet fuel demands to the mid-term (2025). Energy Policy 39(9):5147–5158

    Article  Google Scholar 

  • DeCicco J, Fung F, An F (2015) Global warming on the road, environmental defense. http://www.edf.org/documents/5301_Globalwarmingontheroad.pdf

  • Eaves S, Eaves J (2004) A cost comparison of fuel-cell and battery electric vehicles. J Power Source 130(1–2):208–212

    Article  Google Scholar 

  • Fitzgerald WB, Howitt OJA, Smith IJ (2011) Greenhouse gas emissions from the international maritime transport of New Zealand's imports and exports. Energy Policy 39(3):1521–1531

    Article  Google Scholar 

  • Flannery T (2006) The weather makers. Grove Atlantic, New York. ISBN 9780802142924

    Google Scholar 

  • Geerlings H, van Duin R (2011) A new method for assessing CO2-emissions from container terminals: a promising approach applied in Rotterdam. J Cleaner Prod 19(6–7):657–666

    Article  Google Scholar 

  • Gibson consulting (2015) http://www.gibsonconsulting.com/

  • Greene DL (2004) Transportation and energy. In: Encyclopedia of energy. Academic, Amsterdam/Boston, pp 179–188

    Chapter  Google Scholar 

  • Gross KJ, Thomas GJ, Jensen CM (2002) Catalyzed alanates for hydrogen storage. J Alloy Compound 330–332:683–690

    Article  Google Scholar 

  • Hamelinck CN, Suurs RAA, Faaij APC (2003) International bioenergy transport costs and energy balance. Universiteit Utrecht, Copernicus Institute, Science Technology Society, Utrecht. ISBN 9039335087

    Google Scholar 

  • Hao H, Wang H, Yi R (2011) Hybrid modeling of China’s vehicle ownership and projection through 2050. Energy 36(2):1351–1361

    Article  Google Scholar 

  • Hege JB (2006) The Wankel rotary engine: a history. Mcfarland, Jefferson. ISBN 978–0786429059

    Google Scholar 

  • Heitmann N, Khalilian S (2011) Accounting for carbon dioxide emissions from international shipping: burden sharing under different UNFCCC allocation options and regime scenarios. Marine Policy 35(5):682–691

    Article  Google Scholar 

  • http://www.theweathermakers.org/ (2015)

  • IPCC (2013) http://www.ipcc.ch/report/graphics/index.php?t=Assessment%20Reports&r=AR5%20-%20WG1&f=Chapter%2006

  • Kamal WA (1997) Improving energy efficiency – the cost-effective way to mitigate global warming. Energy Convers Manag 38(1):39–59

    Article  Google Scholar 

  • Kukla G, Gavin J (2004) Milankovitch climate reinforcements. Global Planet Change 40(1–2):27–48

    Article  Google Scholar 

  • Lee JJ (2010) Can we accelerate the improvement of energy efficiency in aircraft systems? Energy Convers Manag 51(1):189–196

    Article  Google Scholar 

  • Lee JJ, Lukachko SP, Waitz IA (2004) Aircraft and energy use. In: Encyclopedia of energy. Academic, Amsterdam/Boston, pp 29–38

    Chapter  Google Scholar 

  • Liao L, Pasternak I (2009) A review of airship structural research and development. Prog Aerosp Sci 45(4–5):83–96

    Article  Google Scholar 

  • Lipscy PY, Schipper L (2013) Energy efficiency in the Japanese transport sector. Energy Policy 56:248–258

    Article  Google Scholar 

  • Litman T (2005) Efficient vehicles versus efficient transportation. Comparing transportation energy conservation strategies. Transp Policy 12(2):121–129

    Article  Google Scholar 

  • Lund H (2007) Renewable energy strategies for sustainable development. Energy 32(6):912–919

    Article  MathSciNet  Google Scholar 

  • Mallapragada DS, Duan G, Agrawal R (2014) From shale gas to renewable energy based transportation solutions. Energy Policy 67:499–507

    Article  Google Scholar 

  • Martin S, Wörner A (2011) On-board reforming of biodiesel and bioethanol for high temperature PEM fuel cells: comparison of autothermal reforming and steam reforming. J Power Source 196(6):3163–3171

    Article  Google Scholar 

  • Miller AR (2009) Applications – transportation, rail vehicles: fuel cells. In: Encyclopedia of electrochemical power sources. Academic, Amsterdam/Boston, pp 313–322

    Chapter  Google Scholar 

  • Miller FP, Vandome AF, McBrewster J (2010) Compressed-air energy storage: compressed-air vehicle. Compressed-air engine, compressed air car, air compressor, load profile, compressed air, … gas, fireless locomotive, vehicle-to- grid. Alphascript Publishing. ISBN: 978–6130271428, Saarbrücken/Germany

    Google Scholar 

  • Morrell P (2009) The potential for European aviation CO2 emissions reduction through the use of larger jet aircraft. J Air Transp Manag 15(4):151–157

    Article  Google Scholar 

  • Muratori M, Moran MJ, Serra E, Rizzoni G (2013) Highly-resolved modeling of personal transportation energy consumption in the United States. Energy 58(1):168–177

    Article  Google Scholar 

  • National Snow & Ice Data Center (2015) http://nsidc.org/

  • Obert EF (1973) Internal combustion engines and air pollution, vol 3. Addison Wesley, New York. ISBN 978–0700221837

    Google Scholar 

  • Parry IWH, Evans D, Oates WE (2014) Are energy efficiency standards justified? J Environ Econ Manag 67(2):104–125

    Article  Google Scholar 

  • Paschen J-A, Ison R (2014) Narrative research in climate change adaptation – exploring a complementary paradigm for research and governance. Res Policy 43(6):1083–1092

    Article  Google Scholar 

  • Petersen AM, Melamu R, Knoetze JH, Görgens JF (2015) Comparison of second-generation processes for the conversion of sugarcane bagasse to liquid biofuels in terms of energy efficiency, pinch point analysis and Life Cycle Analysis. Energy Convers Manag 91:292–301

    Article  Google Scholar 

  • Qin N, Vavalle A, Le Moigne A, Laban M, Hackett K, Weinerfelt P (2004) Aerodynamic considerations of blended wing body aircraft. Prog Aerosp Sci 40(6):321–343

    Article  Google Scholar 

  • Romm J (2006) The car and fuel of the future. Energy Policy 34(17):2609–2614

    Article  Google Scholar 

  • Schrooten L, De Vlieger I, Panis L, Chiffi C, Pastori E (2009) Emissions of maritime transport: a European reference system. Sci Total Environ 408(2):318–323

    Article  Google Scholar 

  • Schulz W (2007) The costs of biofuels. Chem Eng News 85(51):12–16, http://pubs.acs.org/cen/coverstory/85/8551cover.html

    Article  Google Scholar 

  • Sim K, Koo B, Kim CH, Kim TH (2013) Development and performance measurement of micro-power pack using micro-gas turbine driven automotive alternators. Appl Energy 102:309–319

    Article  Google Scholar 

  • Sivak M, Tsimhoni O (2009) Fuel efficiency of vehicles on US roads: 1923–2006. Energy Policy 37(8):3168–3170

    Article  Google Scholar 

  • Sperling D, Gordon D, Schwarzenegger A (2010) Two billion cars: driving toward sustainability. Oxford University Press, New York. ISBN 978–0199737239

    Google Scholar 

  • The Keeling Curve, Scripps Institution of Oceanography, UC San Diego, USA, https://scripps.ucsd.edu/programs/keelingcurve/. Accessed 1 Jan 2015

  • Tickell J (2000) From the fryer to the fuel tank: how to make cheap, clean fuel from free vegetable oil: The complete guide to using vegetable oil as an alternative fuel. GreenTeach Publishing, Sarasota. ISBN 978–0966461602

    Google Scholar 

  • Ticker J (2003) From the fryer to the fuel tank. GreenTeach Publishers, Sarasota. ISBN D-9707227-0

    Google Scholar 

  • Title 40 (2015), Protection of environment, Sec. 600.113-93, Fuel economy calculations, http://edocket.access.gpo.gov/cfr_2010/julqtr/40cfr600.113-93.htm

  • Utlu Z, Hepbasli A (2007) A review on analyzing and evaluating the energy utilization efficiency of countries. Renew Sustain Energy Rev 11(1):1–29

    Article  Google Scholar 

  • van Vliet OPR, van Vliet OPR, Kruithof T, Turkenburg WC, Faaij APC (2010) Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars. J Power Source 195(19):6570–6585

    Article  Google Scholar 

  • Villalba G, Gemechu ED (2011) Estimating GHG emissions of marine ports – the case of Barcelona. Energy Policy 39(3):1363–1368

    Article  Google Scholar 

  • von Blottnitz H, Ann Curran M (2007) A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J Clean Prod 15(7):607–619 (Original Research Article)

    Article  Google Scholar 

  • Walsh JE (2014) Intensified warming of the arctic: causes and impacts on middle latitudes. Global Planet Change 117:52–63

    Article  Google Scholar 

  • Wu L, Huo H (2014) Energy efficiency achievements in China's industrial and transport sectors: how do they rate? Energy Policy 73:38–46

    Article  Google Scholar 

  • Zamfirescu C, Dincer I (2009) Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Process Technol 90(5):729–737 (Original Research Article)

    Article  Google Scholar 

  • Zarifi F, Mahlia TMI, Motasemi F, Shekarchian M, Moghavvemi M (2013) Current and future energy and exergy efficiencies in the Iran’s transportation sector. Energy Convers Manag 74:24–34

    Article  Google Scholar 

  • Zhang M, Li H, Zhou M, Mu H (2011a) Decomposition analysis of energy consumption in Chinese transportation sector. Appl Energy 88(6):2279–2285

    Article  Google Scholar 

  • Zhang M, Li G, Mu HL, Ning YD (2011b) Energy and exergy efficiencies in the Chinese transportation sector, 1980–2009. Energy 36(2):770–776

    Article  Google Scholar 

  • Zhao H (2007) HCCI and CAI engines for the automotive industry. Woodhead Publishing, Cambridge, UK. ISBN 978–1845691288

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Lackner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Lackner, M., Seiner, J.M., Chen, WY. (2017). Fuel Efficiency in Transportation Systems. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-319-14409-2_18

Download citation

Publish with us

Policies and ethics