Skip to main content

Climate Change and Carbon Sequestration in Forest Ecosystems

  • Reference work entry
  • First Online:

Abstract

Forest ecosystems have been identified to be the largest land carbon sink and account for more than half of carbon stored in the terrestrial ecosystems. The influences of climate change on forest ecosystems could have significant implications on global carbon cycling. In this chapter, we reviewed research progresses about climate change impacts on forest ecosystem carbon cycling in the past 20 years. Our review is mostly on field experiments and modeling studies. This chapter starts with a brief description of climate change and forest ecosystems. Different experimental studies are then presented. The impacts of global change such as elevated CO2, global warming, and changes in precipitation and O3 on carbon cycling in forest ecosystems are synthesized. Next, we present some modeling studies of forest ecosystem carbon cycling at ecosystem, regional, and global scales. At the end of the chapter, we make some recommendations for future studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Bader N, Cheng W (2007) Rhizosphere priming effect of Populus fremontii obscures the temperature sensitivity of soil organic carbon respiration. Soil Biol Biochem 39:600–606

    Article  Google Scholar 

  • Bonan GB (2014) Connecting mathematical ecosystems, real-world ecosystems, and climate science. New Phytol 202:731–733

    Article  Google Scholar 

  • Borken W, Savage K, Davidson EA et al (2006) Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Glob Chang Biol 12:177–193

    Article  Google Scholar 

  • Brando PM, Nepstad DC, Davidson EA et al (2008) Drought effects on litterfall, wood production, and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos Trans R Soc B 363:1839–1848

    Article  Google Scholar 

  • Brown S (2002) Measuring carbon in forests: current status and future challenges. Environ Pollut 116:363–372

    Article  Google Scholar 

  • Carney KM, Hungate BA, Drake BG et al (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci U S A 104:4990–4995

    Article  Google Scholar 

  • Chen XM, Liu JX, Deng Q et al (2012) Effects of elevated CO2 and nitrogen addition on soil organic carbon fractions in a subtropical forest. Plant Soil 357:25–34

    Article  Google Scholar 

  • Cheng L, Booker FL, Tu C et al (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087

    Article  Google Scholar 

  • Cleveland CC, Wieder WR, Reed SC et al (2010) Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. Ecology 91:2313–2323

    Article  Google Scholar 

  • Cunningham SC, Read J (2002) Comparison of temperate and tropical rainforest tree species: photosynthetic responses to growth temperature. Oecologia 133:112–119

    Article  Google Scholar 

  • Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form and physiology. Oecologia 113:299–313

    Article  Google Scholar 

  • Dale VH, Rauscher HM (1994) Assessing impacts of climate change on forests: the state of biological modeling. Clim Chang 28:65–90

    Article  Google Scholar 

  • Davidson EA, Nepstad DC, Ishida FY et al (2008) Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Glob Chang Biol 14:2582–2590

    Article  Google Scholar 

  • de Graaff MA, van Groeningen KJ, Six J et al (2006) Interactions between plant growth and nutrient dynamics under elevated CO2: a meta-analysis. Glob Chang Biol 12:1–15

    Article  Google Scholar 

  • Deng Q, Zhou GY, Liu JX et al (2010) Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China. Biogeosciences 7:315–328

    Article  Google Scholar 

  • Deng Q, Hui D, Zhang D et al (2012) Effects of precipitation increase on soil respiration: a three-year field experiment in subtropical forests in China. PLoS One 7(7):e41493. doi:10.1371/journal.pone.0041493

    Article  Google Scholar 

  • Deng Q, Cheng XL, Zhou GY et al (2013) Seasonal responses of soil respiration to elevated CO2 and N addition in young subtropical forest ecosystems in southern China. Ecol Eng 61:65–73

    Article  Google Scholar 

  • Dixon RK, Solomon AM, Brown S et al (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–191

    Article  Google Scholar 

  • Doughty CE (2011) An in situ leaf and branch warming experiment in the Amazon. Biotropica 43:658–665

    Article  Google Scholar 

  • Drake JE, Gallet-Budynek A, Hofmockel KS et al (2011) Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the longterm enhancement of forest productivity under elevated CO2. Ecol Lett 14:349–357

    Article  Google Scholar 

  • Edwards NT (1991) Root and soil respiration responses to ozone in Pinus taeda L, seedlings. New Phytol 118:315–321

    Article  Google Scholar 

  • Fang JY, Guo ZD, Piao SL et al (2007) Terrestrial vegetation carbon sinks in China, 1981–2000. Sci China Ser D Earth Sci 50(9):1341–1350

    Article  Google Scholar 

  • FAO (2001) Smallholder irrigation technology: prospects for Sub-Saharan Africa. IPTRID Secretariat food and agriculture organization of the United Nations Paper No. 3 – March 2001, FAO, Rome

    Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:79–90

    Article  Google Scholar 

  • Fernández-Martínez M, Vicca S, Janssens IA et al (2014) Nutrient availability as the key regulator of global forest carbon balance. Nat Clim Chang 4:471–476

    Article  Google Scholar 

  • Field CB, Lobell DB, Peters HA et al (2007) Feedbacks of terrestrial ecosystems to climate change. Annu Rev Environ Resour 32:1–29

    Article  Google Scholar 

  • Finzi AC, DeLucia EH, Hamilton JG et al (2002) The nitrogen budget of a pine forest under free air CO2 enrichment. Oecologia 132:567–578

    Article  Google Scholar 

  • Fisichelli N, Frelich LE, Reich PB (2012) Sapling growth responses to warmer temperatures “cooled” by browse pressure. Glob Chang Biol 8:3455–3463

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R et al (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353

    Article  Google Scholar 

  • Galbraith D, Levy PE, Sitch S et al (2010) Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytol 187:647–665

    Article  Google Scholar 

  • Galik CS, Jackson RB (2009) Risks to forest carbon offset projects in a changing climate. For Ecol Manag 257:2209–2216

    Article  Google Scholar 

  • Gerten D, Luo Y, Le Maire G et al (2008) Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones. Glob Chang Biol 14:2365–2379

    Article  Google Scholar 

  • Gorte RW (2007) Carbon sequestration in forests. CRS report for congress RL31432. congressional research service

    Google Scholar 

  • Hanson PJ, Todd DE Jr, Amthor JS (2001) A six-year study of sapling and large-tree growth and mortality responses to natural and induced variability in precipitation and throughfall. Tree Physiol 21(6):345–358

    Article  Google Scholar 

  • Hanson PJ, Amthor JS, Wullschleger SD et al (2004) Oak forest carbon and water simulations: model intercomparisons and evaluations against independent data. Ecol Monogr 74:443–489

    Article  Google Scholar 

  • Hickler T, Smith B, Prentice IC et al (2008) CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob Chang Biol 14:1531–1542

    Article  Google Scholar 

  • Hui D, Luo YQ (2004) Evaluation of soil CO2 production and transport in Duke forest using a process-based modeling approach. Glob Biogeochem Cycles 18:GB4029. doi:10.1029/2004GB002297

    Article  Google Scholar 

  • Hui D, Tian H, Luo Y (2012) Impacts of climatic changes on biogeochemical cycling in terrestrial ecosystems. In: Chen W-Y, Seiner J, Suzuki T, Lackner M (eds) Handbook of climate change mitigation. Springer, New York

    Google Scholar 

  • Hyvönen R, Persson T, Andersson S et al (2008) Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 89:121–137

    Article  Google Scholar 

  • IPCC, Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2013) Climate change 2013: the physical science basis: contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jarvis PG, Linder S (2000) Constraints to growth of boreal forests. Nature 405:904–905

    Article  Google Scholar 

  • Karjalainen T, Pussinen A, Liski J et al (2003) Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget. For Policy Econ 5:141–155

    Article  Google Scholar 

  • King J, Liu LL, Aspinwall M (2013) Tree and forest responses to interacting elevated atmospheric CO2 and tropospheric O3: a synthesis of experimental evidence. Dev Environ Sci 13:179. doi:10.1016/B978-0-08-098349-3.00009-8

    Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220:242–258

    Article  Google Scholar 

  • Le Toan T, Quegan S, Davidson MWJ et al (2011) The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens Environ 115:2850–2860

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S et al (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709

    Article  Google Scholar 

  • Lindquist EJ, D’Annunzio R, Gerrand A et al (2012) Global forest land-use change 1990–2005. FAO forestry paper no. 169. In: Food and agriculture organization of the United Nations and European Commission Joint Research Centre. FAO, Rome

    Google Scholar 

  • Liu JX, Zhou GY, Zhang DQ et al (2010) Carbon dynamics in subtropical forest soil: effects of atmospheric carbon dioxide enrichment and nitrogen addition. J Soils Sediments 10:730–738

    Article  Google Scholar 

  • Lloyd J, Farquhar GD (1996) The CO2 dependence of photosynthesis, plant growth and response to elevated CO2 concentrations and their interaction with soil nutrient status. I. General principles and forest ecosystems. Funct Ecol 10:4–32

    Article  Google Scholar 

  • Lloyd J, Farquhar GD (2008) Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philos Trans R Soc B 363:1811–1817

    Article  Google Scholar 

  • Loya WM, Pregitzer KS, Karberg NJ et al (2003) Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. Nature 425:705–707

    Article  Google Scholar 

  • Lu M, Zhou XH, Luo Y et al (2011) Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agric Ecosyst Environ 140:234–244

    Article  Google Scholar 

  • Lu M, Zhou XH, Luo Y et al (2013) Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology 94:726–738

    Article  Google Scholar 

  • Luo Y, Medlyn B, Hui D et al (2001) Gross primary productivity in Duke forest: modeling synthesis of CO2 experiment and eddy-flux data. Ecol Appl 11:239–252

    Google Scholar 

  • Luo Y, Su B, Currie WS et al (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Luo Y, Hui D, Zhang D (2006) Elevated carbon dioxide stimulates net accumulations of carbon and nitrogen in terrestrial ecosystems: a meta-analysis. Ecology 87:53–63

    Article  Google Scholar 

  • Magill A, Aber J, Berntson G et al (2000) Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems 3:238–253

    Article  Google Scholar 

  • McGuire AD, Melillo JM, Joyce LA (1992) Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Glob Biogeochem Cycles 6:101–124

    Article  Google Scholar 

  • McNulty SG, Aber JD, Newman SD (1996) Nitrogen saturation in a high elevation New England spruce-fir stand. For Ecol Manag 84:109–121

    Article  Google Scholar 

  • Meier IC, Leuschner C (2010) Variation of soil and biomass carbon pools in beech forests across a precipitation gradient. Glob Chang Biol 16:1035–1045

    Article  Google Scholar 

  • Meir P, Cox P, Grace J (2006) The influence of terrestrial ecosystems on climate. Trends Ecol Evol 21:254–260

    Article  Google Scholar 

  • Melillo JM, Steudler PA, Aber JD et al (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176

    Article  Google Scholar 

  • Melillo JM, Butler S, Johnson J et al (2011) Soil warming, carbon, nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci U S A 108:9508–9512

    Article  Google Scholar 

  • Morice C, Kennedy J, Rayner N et al (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the hadcrut4 data set. J Geophys Res 117:D08101. doi:10.1029/2011JD017187

    Article  Google Scholar 

  • Nabuurs GJ, Hengeveld GM, Werf DC et al (2010) European forest carbon balance assessed with inventory based methods – an introduction to a special section. For Ecol Manag 260:239–240

    Article  Google Scholar 

  • Nadelhoffer KJ (2000) The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol 147:131–139

    Article  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P et al (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148

    Article  Google Scholar 

  • Nave LE, Vance ED, Swanston CW et al (2009) Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma 153:231–240

    Article  Google Scholar 

  • Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–294

    Article  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B et al (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci U S A 102:18052–18056. doi:10.1073/pnas.0509478102

    Google Scholar 

  • Norby RJ, Warren JM, Iversen CM et al (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci U S A 107:19368–19373

    Article  Google Scholar 

  • Nowak DJ, Crane DE (2002) Carbon storage and sequestration by urban trees in the USA. Environ Pollut 116:381–389

    Article  Google Scholar 

  • Pan YD, Birdsey RA, Fang JY et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  Google Scholar 

  • Pan YD, Birdsey RA, Phillips OL et al (2013) The structure, distribution, and biomass of the world’s forests. Annu Rev Ecol Evol Syst 44:593–622

    Article  Google Scholar 

  • Pan S, Tian H, Dangal SRS (2014) Modeling and monitoring terrestrial primary production in a changing global environment: toward a multiscale synthesis of observation and simulation. Adv Meteorol. 17. doi:10.1155/2014/965936

    Google Scholar 

  • Peñuelas J, Sardans J, Estiarte M et al (2013) Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob Chang Biol 19:2303–2338

    Article  Google Scholar 

  • Peterjohn WT, Melillo JM, Steudler PA (1994) Responses of trace gas fluxes and N availability to experimentally elevated soil temperature. Ecol Appl 4:617–625

    Article  Google Scholar 

  • Peters EB, Wythers KR, Zhang SX et al (2013) Potential climate change impacts on temperate forest ecosystem processes. Can J For Res 43:939–950

    Article  Google Scholar 

  • Potter CS, Randerson JT, Field CB et al (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Glob Biogeochem Cycles 7:811–841

    Article  Google Scholar 

  • Reyer CPO, Leuzinger S, Rammig A et al (2013) A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob Chang Biol 19:75–89

    Article  Google Scholar 

  • Rustad LE (2008) The response of terrestrial ecosystems to global climate change: towards an integrated approach. Sci Total Environ 404:222–235

    Article  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM et al (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Scagel CF, Andersen CP (1997) Seasonal changes in root and soil respiration of ozone-exposed ponderosa pine (Pinus ponderosa) grown in different substrates. New Phytol 136:627–643

    Article  Google Scholar 

  • Shaw MR, Harte J (2001) Response of nitrogen cycling to simulated climate change: differential responses along a subalpine ecotone. Glob Chang Biol 7:193–210

    Article  Google Scholar 

  • Sitch S, Huntingford C, Gedney N et al (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob Chang Biol 14:2015–2039

    Article  Google Scholar 

  • Smith TM, Leemans R, Shugart HH (1992) Sensitivity of terrestrial carbon storage to CO2-induced climate change: comparison of four scenarios based on general circulation models. Clim Chang 21:367–384

    Article  Google Scholar 

  • Solomon AM (1986) Transient response of forests to CO2-induced climate change: simulation modeling experiments in eastern North America. Oecologia 68:567–579

    Article  Google Scholar 

  • Song X, Tian H, Xu X et al (2013) Projecting terrestrial carbon sequestration of the southeastern United States in the 21st century. Ecosphere 4, art88. doi:10.1890/ES12-00398.1

    Article  Google Scholar 

  • Sotta ED, Veldkamp E, Schwendenmann L et al (2007) Effects of an induced drought on soil carbon dioxide (CO2) efflux and soil CO2 production in an Eastern Amazonian rainforest, Brazil. Glob Chang Biol 13:2218–2229

    Article  Google Scholar 

  • Talhelm AF, Pregitzer KS, Zak DR (2009) Species-specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon. Ecol Lett 12:1219–1228

    Article  Google Scholar 

  • Tian HQ, Chen G, Zhang C et al (2012) Century-scale response of ecosystem carbon storage and flux to multifactorial global change in the Southern United States. Ecosystems 15:674–694

    Article  Google Scholar 

  • Wang YP, Houlton BZ (2009) Nitrogen constraints on terrestrial carbon uptake: implications for the global carbon-climate feedback. Geophys Res Lett 36:L24403. doi:10.1029/2009GL041009

    Article  Google Scholar 

  • Wittig VE, Ainsworth EA, Naidu SL et al (2009) Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Glob Chang Biol 10:396–424

    Article  Google Scholar 

  • Yu D, Wang X, Yin Y et al (2014) Estimates of forest biomass carbon storage in Liaoning province of northeast China: a review and assessment. PLoS ONE 9(2):e89572. doi:10.1371/journal.pone.0089572

    Article  Google Scholar 

  • Zaehle S, Medlyn BE, De Kauwe MG et al (2014) Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate free-air CO2 enrichment studies. New Phytol 202:803–822

    Article  Google Scholar 

  • Zak DR, Pregitzer KS, Kubiske ME et al (2011) Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2. Ecol Lett 14:1220–1226

    Article  Google Scholar 

  • Zhou L, Zhou X, Zhang B et al (2014) Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis. Glob Chang Biol 20:2332–2343

    Article  Google Scholar 

  • Zuidema PA, Baker PJ, Groenendijk P et al (2013) Tropical forests and global change: filling knowledge gaps. Trends Plant Sci 18:413–419

    Article  Google Scholar 

Download references

Acknowledgments

Our work has been supported by grants from the Office of Science (BER), US Department of Energy, grant DE-FG03-99ER62800, National Science Foundation (1504886), National Natural Science Foundation of China (31428001), and the United State Department of Agriculture (USDA) Evans-Allen and CBG projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dafeng Hui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Hui, D., Deng, Q., Tian, H., Luo, Y. (2017). Climate Change and Carbon Sequestration in Forest Ecosystems. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-319-14409-2_13

Download citation

Publish with us

Policies and ethics