Skip to main content

Hybrid Pixel Photon Counting X-Ray Detectors for Synchrotron Radiation

  • Reference work entry
Synchrotron Light Sources and Free-Electron Lasers

Abstract

Detectors operated in single-photon-counting mode have radically transformed basic research at synchrotron light sources since 2006. Hybrid photon-counting (HPC) pixel detectors proved to be a disruptive technology for almost all X-ray diffraction applications in the energy range from 2 to 30 keV. The main reason for this success is the accurate determination of scattering and diffraction patterns at the level of individual photons over an extremely high dynamic range.The technology of photon-counting detectors is based on segmented semiconductor sensors, predominantly silicon arrays, which allow direct detection of X-rays and guarantee very high stability and simple operation at room temperature. The sensors are coupled to application-specific integrated circuits (ASICs), which process the electrical signal pulses from the sensor and are designed using modern CMOS processes. The implementation of energy thresholds gives counting detectors the unique capability to determine the number of photons in a specific energy range for very high local and global count rates. The digital detection and storage avoids any readout noise and permits very high frame rates. Combining these features in one device led to a transition from CCD-based detector systems to HPC detectors for applications like protein crystallography, small-angle scattering, and surface and powder diffraction and offers new opportunities in time-resolved experiments. This chapter covers the technology of HPC detectors and their usage at synchrotrons. It describes the basic principles of the sensor, readout ASIC and interconnection technology and highlights the properties of the detectors. In addition details about data correction procedures are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APS:

Active pixel sensor

ASIC:

Application-specific integrated circuit

ATLAS:

A Toroidal LHC Apparatus (detector at CERN)

CCD:

Charge-coupled device

CERN:

Conseil Européen pour la Recherche Nucléaire

CMOS:

Complementary metal-oxide semiconductor

CMS:

Compact Muon Solenoid (detector at CERN)

CT:

Computed tomography

CTF:

Contrast transfer function

DAC:

Digital-to-analog converter

DELPHI:

Particle detector at CERN

DFT:

Discrete Fourier transform

DQE:

Detective quantum efficiency

ELT:

Enclosed layout transistor

ENC:

Equivalent noise charge

FF:

Flat field

FWHM:

Full width at half maximum

HDF5:

Data model library and file format

HEP:

High energy physics

HORUS:

HPAD Output Response Function Simulator

HPC:

Hybrid photon-counting

IP:

Image plate

LHC:

Large Hadron Collider

MTF:

Modulation transfer function

NeXus:

Standard for storing neutron, X-ray, and muon data

NPS:

Noise power spectrum

PX:

Protein crystallography

RMS:

Root mean square

PRC:

Pseudorandom counter

QE:

Quantum efficiency

TSV:

Through-silicon vias

WA97:

Heavy ion experiment at CERN

XPAD:

X-ray pixel chips with adaptive dynamics

References

  • U.W. Arndt, Counting losses of detectors for X-rays from storage rings. J. Phys. E 11, 671–673 (1978)

    Article  ADS  Google Scholar 

  • ATLAS Collaboration, ATLAS detector and physics performance: technical design report, 1 CERN-LHCC-99-014 (1999)

    Google Scholar 

  • R. Ballabriga, The design and implementation in 0. 13 μm CMOS of an algorithm permitting spectroscopic imaging with high spatial resolution for hybrid pixel detectors. CERN-THESIS-2010-055 (2010)

    Google Scholar 

  • R. Ballabriga et al., Characterization of the Medipix3 pixel readout chip. J. Instrum. 6, C01052 (2011)

    Article  Google Scholar 

  • R. Ballabriga et al., The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J. Instrum. 8, C02016 (2013)

    Article  Google Scholar 

  • J.E. Bateman, The effect of beam time structure on counting detectors in SRS experiments. J. Synchrotron Radiat. 7, 307–312 (2000)

    Article  Google Scholar 

  • M. Battaglia et al., R&D paths of pixel detectors for vertex tracking and radiation imaging (2012). http://arxiv.org/abs/1208.0251

  • A. Bergamaschi et al., The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source. J. Synchrotron Radiat. 17, 653–668 (2010)

    Article  Google Scholar 

  • M.J. Berger et al., XCOM: photon cross sections database. NIST, PML, Radiation and Biomolecular Physics Division (1998). http://www.nist.gov/pml/data/xcom. Accessed Aug 2014

  • C. Broennimann et al., Synchrotron beam test with a photon-counting pixel detector. J. Synchrotron Radiat. 7, 301–306 (2000)

    Article  Google Scholar 

  • C. Broennimann et al., Continuous sample rotation data collection for protein crystallography with the PILATUS detector. Nucl. Instrum. Meth. A 510, 24–28 (2003)

    Article  ADS  Google Scholar 

  • C. Broennimann et al., The PILATUS 1M detector. J. Synchrotron Radiat. 13, 120–130 (2006)

    Article  Google Scholar 

  • M. Campbell, 10 years of the Medipix2 collaboration. Nucl. Instrum. Meth. A 633, S1–S10 (2011)

    Article  Google Scholar 

  • F. Cassol Brunner, First K-edge imaging with a micro-CT based on the XPAD3 hybrid pixel detector. IEEE Trans. Nucl. Sci. 60, 103–108 (2013)

    Article  ADS  Google Scholar 

  • CMS Collaboration, CMS physics: technical design report volume 1: detector performance and software CERN-LHCC-2006-001 (2006)

    Google Scholar 

  • C.E. Cohn, The effect of deadtime on counting errors. Nucl. Instrum. Meth. 41, 338–340 (1966)

    Article  ADS  Google Scholar 

  • P. Delpierre, Pixels detectors and silicon X-rays detectors. J. Phys. IV 4, C9 11–18 (1994)

    Google Scholar 

  • P. Delpierre, A history of hybrid pixel detectors, from high energy physics to medical imaging. J. Instrum. 9, C05059 (2014)

    Article  Google Scholar 

  • R. Dinapoli, A Radiation tolerant pixel detector system for the ALICE and LHCb experiments at CERN. CERN-THESIS-2004-066 (2004)

    Google Scholar 

  • R. Dinapoli et al., EIGER: next generation single photon counting detector for X-ray applications. Nucl. Instrum. Meth. A 650, 79–83 (2011)

    Article  ADS  Google Scholar 

  • R. Dinapoli et al., EIGER characterization results. Nucl. Instrum. Meth. A 731, 68–73 (2013)

    Article  ADS  Google Scholar 

  • T. Donath et al., Characterization of the PILATUS photon-counting pixel detector for X-ray energies from 1.75 keV to 60 keV. J. Phys. Conf. Ser. 425, 062001 (2013a)

    Google Scholar 

  • T. Donath et al., Meeting report: workshop on beamline integration and data formatting. Synchrotron Radiat. News 26, 34–35 (2013b)

    Article  Google Scholar 

  • P. Fischer et al., A counting pixel readout chip for imaging applications. Univ. Physikal. Inst. Bonn 97, 1–10 (1997)

    Google Scholar 

  • E.N. Gimenez, Characterization of Medipix3 With synchrotron radiation. IEEE Trans. Nucl. Sci. 58, 323–332 (2011)

    Article  ADS  Google Scholar 

  • H. Graafsma, Hybrid pixel array detectors for photon science, in Semiconductor Radiation Detection Systems, ed. by K. Iniewski. CRC, Boca Raton, pp 217–236 (2010)

    Google Scholar 

  • S.M. Gruner et al., Evaluation of area photon detectors by a method based on detective quantum efficiency (DQE). IEEE Trans. Nucl. Sci. 25, 562–565 (1978)

    Article  ADS  Google Scholar 

  • E.H.M. Heijne et al., The silicon micropattern detector: a dream? Nucl. Instrum. Meth. A 273, 615–619 (1988)

    Article  ADS  Google Scholar 

  • G. Hülsen et al., Distortion calibration of the PILATUS 1M detector. Nucl. Instrum. Meth. A 548, 540–554 (2005)

    Article  ADS  Google Scholar 

  • P. Kraft et al., Characterization and calibration of PILATUS detectors. IEEE Trans. Nucl. Sci. 56, 758–764 (2009a)

    Article  ADS  Google Scholar 

  • P. Kraft et al., Performance of single-photon-counting PILATUS detector modules. J. Synchrotron Radiat. 16, 368–375 (2009b)

    Article  Google Scholar 

  • I. Johnson et al., Capturing dynamics with Eiger, a fast-framing X-ray detector. J. Synchrotron Radiat. 19, 1001–1005 (2012)

    Article  Google Scholar 

  • F. Krummenacher, Pixel detectors with local intelligence: an IC designer point of view. Nucl. Instrum. Meth. A 305, 527–532 (1991)

    Article  ADS  Google Scholar 

  • T. Loeliger et al., The new PILATUS3 ASIC with instant retrigger capability. IEEE Nucl. Sci. Med. Imaging. Conf. R 1, 610–615 (2012)

    Google Scholar 

  • G. Lutz, Semiconductor Radiation Detectors. Springer, Berlin (1997)

    MATH  Google Scholar 

  • K. Medjoubi et al., Detective quantum efficiency, modulation transfer function and energy resolution comparison between CdTe and silicon sensors bump-bonded to XPAD3S. J. Synchrotron Radiat. 17, 486–495 (2010)

    Article  Google Scholar 

  • P. Pangaud et al., XPAD3: a new photon counting chip for X-ray CT-scanner. Nucl. Instrum. Meth. A 571, 321–324 (2007)

    Article  ADS  Google Scholar 

  • P. Pangaud et al., XPAD3-S: a fast hybrid pixel readout chip for X-ray synchrotron facilities. Nucl. Instrum. Meth. A 591, 159–162 (2008)

    Article  ADS  Google Scholar 

  • B.R. Pauw, Everything SAXS: small-angle scattering pattern collection and correction. J. Phys. Condens. Matter. 25, 383201 (2013)

    Article  ADS  Google Scholar 

  • D. Pennicard, H. Graafsma, Simulated performance of high-Z detectors with Medipix3 readout. J. Instrum. 6 P06007 (2011)

    Google Scholar 

  • C. Ponchut, Characterization of X-ray area detectors for synchrotron beamlines. J. Synchrotron Radiat. 13, 195–203 (2005a)

    Article  Google Scholar 

  • C. Ponchut et al., Experimental comparison of pixel detector arrays and CCD-based systems for X-ray area detection on synchrotron beamlines. IEEE Trans. Nucl. Sci. 52, 1760–1765

    Google Scholar 

  • G. Potdevin et al., HORUS, an HPAD X-ray detector simulation program. J. Instrum. 4, P09010 (2009)

    Article  Google Scholar 

  • S. Procz et al., Flatfield correction optimization for energy selective X-ray imaging with Medipix3. IEEE Trans. Nucl. Sci. 58, 3182–3189 (2011)

    Article  ADS  Google Scholar 

  • L. Rossi et al., Pixel Detectors. Springer, Berlin/Heidelberg/New York (2006)

    Google Scholar 

  • B.A. Sobott et al., Synchrotron radiation hardness studies of PILATUS II. J. Synchrotron Radiat. 16, 489–493 (2009)

    Article  Google Scholar 

  • A.C. Thompson et al., X-ray data booklet. Center for X-ray optics and Advanced Light Source (2009). http://xdb.lbl.gov. Accessed August 2014

  • P. Trueb et al., Improved count rate corrections for highest data quality with PILATUS detectors. J. Synchrotron Radiat. 19, 347–351 (2012)

    Article  Google Scholar 

  • P. Trueb et al., Bunch mode specific rate corrections for PILATUS3 detectors. J. Synchrotron Radiat. (2015, accepted)

    Google Scholar 

  • A.V. Tyazhev et al., GaAs radiation imaging detectors with an active layer thickness up to 1mm. Nucl. Instrum. Meth. A 509, 34–39 (2003)

    Article  ADS  Google Scholar 

  • M.C. Veale et al., Chromium compensated gallium arsenide detectors for X-ray and \(\upgamma\)-ray spectroscopic imaging. Nucl. Instrum. Meth. A 752, 6–14 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Trüb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Brönnimann, C., Trüb, P. (2016). Hybrid Pixel Photon Counting X-Ray Detectors for Synchrotron Radiation. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-14394-1_36

Download citation

Publish with us

Policies and ethics