Skip to main content

Imaging for the Automotive Environment

  • Reference work entry
  • First Online:

Abstract

There is increasing interest in the development of advanced driver assistance systems (ADASs), driven in large part by the need to enhance safety and the driving experience for the occupants of passenger vehicles. Cameras (often multiple cameras) are a critical sensor component of such systems and provide a rich source of information that is often not possible from other sources. This chapter discusses some of the key aspects surrounding the use of cameras in the automotive environment. It covers the key legislative and commercial drivers and technical requirements, before discussing characteristics of fisheye lenses and how these are deployed in typical camera system architectures. The chapter then discusses aspects relating to image and video quality, a topic that has been much studied in consumer applications but only relatively recently considered in the automotive environment. Finally, the application of cameras as a key technology in the evolution of autonomous vehicles is considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Further Reading

  • Anderson JM, Kalra N, Stanley KD, Sorensen P, Samaras C, Oluwatola OA (2014) Autonomous vehicle technology: a guide for policymakers. RAND Corporation report. http://www.rand.org/pubs/research_reports/RR443-1.html

  • Bovik A (2013) Automatic prediction of perceptual image and video quality. Proc IEEE 101(9):2008–2024

    MathSciNet  Google Scholar 

  • Broggi A, Bertozzi M, Fascioli A, Bianco C, Piazzi A (1999) The argo autonomous vehicle’s vision and control systems. Int J Intell Control Syst 3(3):409–441

    Google Scholar 

  • Chariglione L (2012) Multimedia standards: interfaces to innovation. Proc IEEE 100(4):893–904

    Article  Google Scholar 

  • Darmont A (2012) High dynamic range imaging – sensors and architectures. SPIE, Washington

    Book  Google Scholar 

  • Deng C, Ma L, Lin W, Ngan KN (eds) (2014) Visual signal quality assessment. Springer International Publishing, Switzerland. 978–3319103679

    Google Scholar 

  • Denny P (2014) Imaging challenges for ADAS systems – the road ahead is long and winding; a tier1 perspective for sensor suppliers. Proceedings of IS Auto 2014. Brussels, Belgium

    Google Scholar 

  • Dollár P, Wojek C, Schiele B, Perona P (2012) Pedestrian detection: an evaluation of the state of the art. IEEE Trans Pattern Anal Mach Intell 34(4):743–761

    Article  Google Scholar 

  • Friel M, Hughes C, Denny P, Jones E, Glavin M (2010) Automatic calibration of fish-eye cameras from automotive video sequences. IET Intell Transp Syst 4(2):136–148

    Article  Google Scholar 

  • Gerónimo D, López AM, Sappa D, Thorsten G (2010) Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans Pattern Anal Mach Intell 32(7):1239–1258

    Article  Google Scholar 

  • Hase T, Hintermaier W, Frey A, Strobel T, Baumgarten U, Steinbach E (2011) Influence of image/video compression on night vision based pedestrian detection in an automotive application. In: Proceedings of IEEE 73rd vehicular technology conference (VTC spring), Budapest, 2011, pp 1–5

    Google Scholar 

  • Hemami S, Reibman AR (2010) No-reference image and video quality estimation: applications and human-motivated design. Signal Process Image Commun 25(7):469–481

    Article  Google Scholar 

  • Hertel D, Chang E (2007) Image quality standards in automotive vision applications. In: Proceedings of IEEE intelligent vehicles symposium, pp 404–409

    Google Scholar 

  • Hughes C, Glavin M, Jones E, Denny P (2009) Wide-angle camera technology for automotive applications: a review. IET Intell Transp Syst 3(1):19–31

    Article  Google Scholar 

  • International Organization for Standardization, ISO16505 (2014) 3rd progress report of ISO/TC22/SC17/WG2 (ISO 16505)

    Google Scholar 

  • ITU-R Recommendation BT.500-13 (2012) Methodology for the subjective assessment of the quality of television pictures. International Telecommunications Union

    Google Scholar 

  • ITU-T Recommendation P.910 (1999) Subjective video quality assessment methods for multimedia applications. International Telecommunications Union

    Google Scholar 

  • Kane S (2011) 2012 family cars with self-parking technology. http://www.thecarconnection.com/news/1067819_2012-family-cars-with-self-parking-technology. Accessed Jan 2015

  • Lin W, Kuo C-C (2011) Perceptual visual quality metrics: a survey. J Vis Commun Image Represent 22(4):297–312

    Article  Google Scholar 

  • Liu H, Klomp N, Heynderickx I (2010) A no-reference metric for perceived ringing artifacts in images. IEEE Trans Circuits Syst Video Technol 20(4):529–539

    Article  Google Scholar 

  • Loce R, Bernal E, Wu W, Bala R (2013) Computer vision in roadway transportation systems: a survey. J Electron Imaging 22(4):041121

    Article  Google Scholar 

  • Lotto RB, Williams SM, Purves D (1999) Mach bands as empirically derived associations. Proc Natl Acad Sci 96(9):5245–5250

    Article  Google Scholar 

  • Marziliano P, Dufaux F, Winkler S, Ebrahimi T (2004) Perceptual blur and ringing metrics: application to JPEG2000. Signal Process Image Commun 19(2):163–172

    Article  Google Scholar 

  • Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    Article  MathSciNet  Google Scholar 

  • Mittal A, Soundararajan R, Bovik AC (2013) Making a ‘completely blind’ image quality analyzer. IEEE Signal Process Lett 21(3):209–212

    Article  Google Scholar 

  • National Highway Transport Safety Administration §571.111 standard no. 111; rearview mirrors (1999)

    Google Scholar 

  • National Highway Transport Safety Administration (2014) Federal motor vehicle safety standards; rear visibility; final rule, 49 CFR part 571

    Google Scholar 

  • New York Times. http://www.nytimes.com/2010/10/10/science/10google.html?_r=0. Accessed 20 Jan 2015

  • Pinson M, Wolf S (2004) A new standardized method for objectively measuring video quality. IEEE Trans Broadcast 50(3):312–322

    Article  Google Scholar 

  • Saad MA, Bovik AC (2012a) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process 21(8):3339–3352

    Article  MathSciNet  Google Scholar 

  • Saad M, Bovik AC (2012b) Blind quality assessment of videos using a model of natural scene statistics and motion coherency. In: Proceedings of annual Asilomar conference signals systems computers, Monterey, Nov 2012, pp 332–336

    Google Scholar 

  • Sadaka N, Karam L, Ferzli R, Abousleman G (2008) A no-reference perceptual image sharpness metric based on saliency-weighted foveal pooling. In: Proceedings of IEEEE international conference on image processing, San Diego, 2008, pp 369–372

    Google Scholar 

  • Savage D, Hughes C, Horgan J, Finn S (2013) Crossing traffic alert and obstacle detection with the Valeo 360Vue® camera system. In: 9th ITS European congress, Dublin, 4–7 June 2013

    Google Scholar 

  • Schöberl M, Brückner A, Foessel S, Kaup A (2012) Photometric limits for digital camera systems. J Electron Imaging 21(2):020 501–1–020 501–3

    Google Scholar 

  • Seshadrinathan K, Bovik A (2009) Video quality assessment. In: Bovik AC (ed) The essential guide to video processing. Elsevier, New York

    Google Scholar 

  • Seshadrinathan K, Bovik AC (2010) Motion-tuned spatio-temporal quality assessment of natural videos. IEEE Trans Image Process 19(2):335–350

    Article  MathSciNet  Google Scholar 

  • Seshadrinathan K, Soundararajan R, Bovik AC, Cormack LK (2010) Study of subjective and objective quality assessment of video. IEEE Trans Image Process 19(6):1427–1441

    Article  MathSciNet  Google Scholar 

  • Shaout A, Jarrah M (1997) Cruise control technology review. Comput Electr Eng 23(4):259–271

    Article  Google Scholar 

  • Sydell L (2010) Live blog: Steve Jobs Introduces the iPhone 4. http://www.npr.org/blogs/alltechconsidered/2010/06/07/127530049/live-blogging-apple-s-developers-conference. Accessed 20 Jan 2015

  • United Nations Economic and Social Council. Proposal for the 04 series of amendments to regulation no. 46 (devices for indirect vision). ECE/TRANS/WP.29/2012/87

    Google Scholar 

  • US Government, Cameron Gulbransen Kids Transportation Safety Act of 2007, (Public Law 110–189, 122 Stat. 639–642), § 4 (2007)

    Google Scholar 

  • Valeo. http://www.valeo.com/medias/upload/2014/04/31542/valeo-innovative-back-over-protection-system-wins.pdf. Accessed Jan 2015

  • Vu PV, Vu CT, Chandler DM A spatiotemporal most-apparent-distortion model for video quality assessment. In: Proceedings of IEEE international conference on image processing, Brussels, 2011, pp 2505–2508

    Google Scholar 

  • Wang Z, Bovik A (2002) A universal image quality index. IEEE Signal Process Lett 9(3):81–84

    Article  Google Scholar 

  • Wang Z, Bovik AC (2011) Reduced and no-reference image quality assessment. IEEE Signal Process Mag 28(6):29–40

    Article  Google Scholar 

  • Wang Z, Li Q (2011) Information content weighting for perceptual image quality assessment. IEEE Trans Image Process 20(5):1185–1198

    Article  MathSciNet  Google Scholar 

  • Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  • Westhoff D (2012) Fahrzeughautomaitiserung im rechtlichen Kontext. VDI-Berichte Nr. 2166, p 263, 28. VDI/VW-Gemeinschaftstagugng Fahrerassistenz und Integrierte Sicherheit

    Google Scholar 

  • Winterlich A, Zlokolica V, Denny P, Kilmartin L, Glavin M, Jones E (2013) A saliency weighted no-reference perceptual blur metric for the automotive environment. In: Proceedings of international workshop on quality of multimedia experience (QoMEX), Klagenfurt am Wörthersee, Austria, 2013, pp 206–211

    Google Scholar 

  • Winterlich A, Denny P, Kilmartin L, Glavin M, Jones E (2014) Performance optimization for pedestrian detection on degraded video using natural scene statistics. SPIE J Electron Imaging 23(6):061114-1

    Google Scholar 

  • Zhu X, Milanfar P (2009) A no-reference sharpness metric sensitive to blur and noise. In: International workshop on quality of multimedia experience (QoMEX), San Diego, 2009, pp 64–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Denny, P., Jones, E., Glavin, M., Hughes, C., Deegan, B. (2016). Imaging for the Automotive Environment. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14346-0_208

Download citation

Publish with us

Policies and ethics