Abstract
This chapter contains a survey of results in the existence theory of strong solutions to the steady compressible Navier-Stokes system. In the first part, the compressible Navier-Stokes equations are studied in bounded domains, both for homogeneous (no inflow) and inhomogeneous (inflow) boundary conditions. The solutions are constructed in Sobolev spaces. The next part contains the results for unbounded domains, especially for the exterior domains. Here, not only the question of existence and uniqueness is considered, but also the asymptotic structure near infinity is studied. Due to the different nature of the problems, the two- and three-dimensional problems are treated separately.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
M. Bause, J.G. Heywood, A. Novotný, M. Padula, An Iterative Scheme for Steady Compressible Viscous Flow, Modified to Treat Large Potential Forces. Mathematical Fluid Mechanics, Advances in Mathematical Fluid Mechanics (Birkhäuser, Basel, 2001), pp. 27–45
M. Bause, J.G. Heywood, A. Novotný, M. Padula, On some approximation schemes for steady compressible viscous flow. J. Math. Fluid Mech. 5(3), 201–230 (2003)
H. Beirão da Veiga, On a stationary transport equation. Ann. Univ. Ferrara Sez. VII (N.S.) 32, 79–91 (1986)
H. Beirão da Veiga, An Lp-theory for the n-dimensional, stationary, compressible Navier–Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions. Commun. Math. Phys. 109, 229–248 (1987)
H. Beirão da Veiga, Existence results in Sobolev spaces for a stationary transport equation. Ricerche Mat. 36(suppl), 173–184 (1987)
C. Dou, F. Jiang, S. Jiang, Y.-F. Yang, Existence of strong solutions to the steady Navier–Stokes equations for a compressible heat-conductive fluid with large forces. J. Math. Pures Appl. 103(5), 1163–1197 (2015)
P. Dutto, A. Novotný, Physically reasonable solutions to steady compressible Navier–Stokes equations in the plane. Preprint University of Toulon (1998)
P. Dutto, A. Novotný, Physically reasonable solutions to steady compressible Navier–Stokes equations in 2d exterior domains with nonzero velocity at infinity. J. Math. Fluid. Mech. 3, 99–138 (2001)
P. Dutto, J.L. Impagliazzo, A. Novotný, Schauder estimates for steady compressible Navier–Stokes equations in bounded domains. Rend. Sem. Mat. Univ. Padova 98, 125–139 (1997)
R. Farwig, Stationary solutions of compressible Navier–Stokes equations with slip boundary condition. Commun. Partial Differ. Equ. 14(11), 1579–1606 (1989)
R. Farwig, A. Novotný, M. Pokorný, The fundamental solution of a modified Oseen problem. Z. Anal. Anwendungen 19, 713–728 (2000)
G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems. Springer Monographs in Mathematics, 2nd edn. (Springer, New York, 2011)
G.P. Galdi, A. Novotný, M. Padula, On the twodimensional steady-state problem of a viscous gas in an exterior domain. Pac. J. Math. 179, 65–100 (1997)
Y. Guo, S. Jiang, C. Zhou, Steady viscous compressible channel ows. SIAM J. Math. Anal. 47(5), 3648–3670 (2015)
J.G. Heywood, M. Padula, On the existence and uniqueness theory for steady compressible viscous flow, in Fundamental Directions in Mathematical Fluid Mechanics, ed. by G.P. Galdi, J.G. Heywood, R. Rannacher. Advances in Mathematical Fluid Mechanics (Birkhäuser, Basel, 2000), pp. 171–189
B.J. Jin, M. Padula, Steady flows of compressible fluids in a rigid container with upper free boundary. Math. Ann. 329(4), 723–770 (2004)
R.B. Kellogg, J.R. Kweon, Compressible Navier–Stokes equations in a bounded domain with inflow boundary condition. SIAM J. Math. Anal. 28(1), 94–108 (1997)
R.B. Kellogg, J.R. Kweon, Smooth solution of the compressible Navier–Stokes equations in an unbounded domain with inflow boundary condition. J. Math. Anal. Appl. 220, 657–675 (1998)
H. Koch, Partial differential equations and singular integrals, in: Dispersive Nonlinear Problems in Mathematical Physics. Quaderni di Matematica, vol. 15 (Department of Mathematics, Seconda Università di Napoli, Caserta, 2004), pp. 59–122
P. Konieczny, O. Kreml, On the 3D steady flow of a second grade fluid past an obstacle. J. Math. Fluid Mech. 14(2), 295–309 (2012)
S. Kračmar, A. Novotný, M. Pokorný, Estimates of Oseen kernels in weighted Lp spaces. J. Math. Soc. Jpn 53(1), 59–111 (2001)
J.R. Kweon, A regularity result of solution to the compressible Stokes equations on a convex polygon. Z. Angew. Math. Phys. 55(3), 435–450 (2004)
J.R. Kweon, R.B. Kellogg, Regularity of solutions to the Navier–Stokes equations for compressible barotropic flows on a polygon. Arch. Ration. Mech. Anal. 163(1), 35–64 (2002)
J.R. Kweon, R.B. Kellogg, Regularity of solutions to the Navier–Stokes system for compressible flows on a polygon. SIAM J. Math. Anal. 35(6), 1451–1485 (2004)
J.R. Kweon, M. Song, Boundary geometry and regularity of solution to the compressible Navier–Stokes equations in bounded domains of Rn. ZAMM Z. Angew. Math. Mech. 86(6), 495–504 (2006)
A. Matsumura, T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn Acad. Ser. A Math. Sci. 55(9), 337–342 (1979)
A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20(1), 67–104 (1980)
A. Matsumura, T. Nishida, Exterior stationary problems for the equations of motion of compressible heat-conductive fluids, in Proceedings of Equadiff 89, ed. by C.M. Dafermos, et al. (Dekker, Amsterdam, 1989), pp. 473–479
P.B. Mucha, T. Piasecki, Compressible perturbation of Poiseuille type flow. J. Math. Pures Appl. (9) 102(2), 338–363 (2014)
P.B. Mucha, R. Rautmann, Convergence of Rothe’s scheme for the Navier–Stokes equations with slip conditions in 2D domains. ZAMM Z. Angew. Math. Mech. 86(9), 691–701 (2006)
S.A. Nazarov, A. Novotný, K. Pileckas, On steady compressible Navier–Stokes equations in plane domains with corners. Math. Ann. 304(1), 121–150 (1996)
A. Novotný, Existence and uniqueness of stationary solutions for viscous compressible heat-conductive fluid with great potential and small nonpotential forces, in International Conference on Differential Equations, Barcelona, 1991, vols. 1 and 2 (World Scientific, River Edge, 1993), pp. 795–799
A. Novotný, Steady flows of viscous compressible fluids in exterior domains under small perturbations of great potential forces. Math. Mod. Methods Appl. Sci. 3, 725–757 (1993)
A. Novotný, About steady transport equation. I. Lp-approach in domains with smooth boundaries. Comment. Math. Univ. Carol. 37(1), 43–89 (1996)
A. Novotný, Compactness of steady compressible isentropic Navier–Stokes equations via the decomposition method (the whole 3-D space), in Theory of the Navier–Stokes Equations, ed. by J. Málek, J. Nečas, M. Rokyta. Series on Advances in Mathematics for Applied Sciences, vol. 47 (World Scientific, River Edge, 1998), pp. 106–120
A. Novotný, M. Padula, Existence and uniqueness of stationary solutions of equations of a compressible viscous heat-conducting fluid for large potential and small nonpotential external forces. (Russian) Sibirsk. Mat. Zh. 34(5), 120–146 (1993). Translation in Siberian Math. J. 34(5), 898–922 (1993)
A. Novotný, M. Padula, Lp-approach to steady flows of viscous compressible fluids in exterior domains. Arch. Ration. Mech. Anal. 126, 243–297 (1994)
A. Novotný, M. Padula, Note on decay of solutions of steady Navier–Stokes equations in 3-D exterior domains. Differ. Integral Equ. 8(7), 1833–1842 (1995)
A. Novotný, M. Padula, Physically reasonable solutions to steady compressible Navier–Stokes equations in 3D-exterior domains (v ∞ = 0). J. Math. Kyoto Univ. 36(2), 389–422 (1996)
A. Novotný, M. Padula, Physically reasonable solutions to steady compressible Navier–Stokes equations in 3D-exterior domains (v ∞ ≠ 0). Math. Ann. 308, 439–489 (1997)
A. Novotný, M. Padula, P. Penel, A remark on the well posedness of the problem of a steady flow of a viscous barotropic gas in a pipe. Commun. Partial Differ. Equ. 21(1–2), 23–34 (1996)
A. Novotný, P. Penel, An Lp approach for steady flows of compressible heat conducting gas. Preprint University of Toulon (1997)
A. Novotný, P. Penel, V.A. Solonnikov, Investigation of the problem of viscous compressible fluid flow around a bounded body in Hölder spaces. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 245 (1997), Vopr. Kvant. Teor. Polya i Stat. Fiz. 14, 247–269, 287; translation in J. Math. Sci. (N.Y.) 100(2), 2166–2180 (2000)
A. Novotný, K. Pileckas, Steady compressible Navier–Stokes equations with large potential forces via a method of decomposition. Math. Methods Appl. Sci. 21(8), 665–684 (1998)
A. Novotný, I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and Its Applications, vol. 27 (Oxford University Press, Oxford, 2004)
M. Padula, Existence and continuous dependence for solutions to the equations of a one-dimensional model in gas dynamics. Meccanica 17, 128–135 (1981)
M. Padula, Existence and uniqueness for viscous steady compressible motions, in Proc. Sem. Fis. Mat., Dinamica dei Fluidi e dei gaz ionizzati, Trieste (1982)
M. Padula, Uniqueness theorems for steady, compressible, heat-conducting fluids: bounded domains. I. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 74(6), 380–387 (1983)
M. Padula, Uniqueness theorems for steady, compressible, heat-conducting fluids: exterior domains. II. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 75(1–2), 56–60 (1984)
M. Padula, Existence and uniqueness for viscous, steady compressible motions. Arch. Ration. Mech. Anal. 77, 89–102 (1987)
M. Padula, A representation formula for the steady solutions of a compressible fluid moving at low speed, in Proceedings of the Fourth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics, Kyoto, 1991. Transp. Theory Stat. Phys. 21(4–6), 593–613 (1992)
M. Padula, On the exterior steady problem for the equations of a viscous isothermal gas. Comment. Math. Univ. Carol. 34(2), 275–293 (1993)
M. Padula, Mathematical properties of motions of viscous compressible fluids, in Progress in Theoretical and Computational Fluid Mechanics, Paseky, 1993, ed. by G.P. Galdi, J. Nečas. Pitman Research Notes in Mathematics Series, vol. 308 (Longman Scientific & Technical, Harlow, 1994), pp. 128–173
M. Padula, Steady Flows of Barotropic Viscous Fluids. Classical Problems in Mechanics, Quaderni di Matematica, vol. 1 (Department of Mathematics, Seconda Università di Napoli, Caserta, 1997), pp. 253–345
M. Padula, K. Pileckas, On the existence of steady motions of a viscous isothermal fluid in a pipe, in Navier–Stokes Equations and Related Nonlinear Problems, Funchal, 1994 (Plenum, New York, 1995), pp. 171–188
M. Padula, K. Pileckas, On the existence and asymptotical behaviour of a steady flow of a viscous barotropic gas in a pipe. Ann. Mat. Pura Appl. 172(4), 191–218 (1997)
T. Piasecki, Steady compressible Navier–Stokes flow in a square. J. Math. Anal. Appl. 357, 447–467 (2009)
T. Piasecki, On an inhomogeneous slip-inflow boundary value problem for a steady flow of a viscous compressible fluid in a cylindrical domain. J. Differ. Equ. 248, 2171–2198 (2010)
T. Piasecki, M. Pokorný, Strong solutions to the Navier–Stokes-Fourier system with slip-inflow boundary conditions. ZAMM Z. Angew. Math. Mech. 94(12), 1035–1057 (2014)
P.I. Plotnikov, J. Sokolowski, Shape derivative of drag functional. SIAM J. Control Optim. 48(7), 4680–4706 (2010)
P. Plotnikov, J. Sokolowski, Compressible Navier–Stokes Equations. Theory and Shape Optimization. Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 73 (Birkhäuser/Springer/Basel AG, Basel, 2012)
P.I. Plotnikov, E.V. Ruban, J. Sokolowski, Inhomogeneous boundary value problems for compressible Navier–Stokes equations: well-posedness and sensitivity analysis. SIAM J. Math. Anal. 40(3), 1152–1200 (2008)
M. Pokorný, Asymptotic behaviour of solutions of certain PDE’s describing the flow of fluids in unbounded domains. PhD. thesis, Charles University in Prague and University of Toulon (1999)
C.G. Simader, H. Sohr, The weak Dirichlet problem for Δ in Lq in bounded and exterior domains. Stab. Anal. Cont. Media 2, 183–202 (1992)
C.G. Simader, H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in Lq-spaces for bounded and exterior domains, in Mathematical Problems Relating to the Navier–Stokes Equation, ed. by G.P. Galdi. Series on Advances in Mathematics for Applied Sciences, vol. 11 (World Scientific, River Edge, 1992), pp. 1–35
E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Monographs in Harmonic Analysis, III (Princeton University Press, Princeton, 1993)
A. Valli, Periodic and stationary solutions for compressible Navier–Stokes equations via a stability method. Ann. Scuola Normale Sup. Pisa 4(1), 607–646 (1983)
A. Valli, On the existence of stationary solutions to compressible Navier–Stokes equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 4(1), 99–113 (1987)
Acknowledgements
The second author (PBM) has been partly supported by the National Science Centre grant 2014/14/M/ST1/00108 (Harmonia). The work of the first (OK) and the third author (MP) was partially supported by the Grant Agency of the Czech Republic, Grant No. 16-03230S.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this entry
Cite this entry
Kreml, O., Mucha, P.B., Pokorný, M. (2018). Existence and Uniqueness of Strong Stationary Solutions for Compressible Flows. In: Giga, Y., Novotný, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-13344-7_65
Download citation
DOI: https://doi.org/10.1007/978-3-319-13344-7_65
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13343-0
Online ISBN: 978-3-319-13344-7
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering