Skip to main content

Fourier Analysis Methods for the Compressible Navier-Stokes Equations

  • Reference work entry
  • First Online:
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Abstract

In the last three decades, Fourier analysis methods have known a growing importance in the study of linear and nonlinear PDEs. In particular, techniques based on Littlewood-Paley decomposition and paradifferential calculus have proved to be very efficient for investigating evolutionary fluid mechanics equations in the whole space or in the torus. The present survey overviews results based on Fourier analysis and paradifferential calculus, for the compressible Navier-Stokes equations. Focus is on the initial value problem in the case where the fluid domain is \( \mathbb {R}^{d} \) (or the torus \( \mathbb {T}^{d} \)) with d ≥ 2 and on some asymptotic properties of global small solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der mathematischen Wissenschaften, vol. 343 (Springer, Heidelberg/New York, 2011)

    Google Scholar 

  2. G.K. Batchelor, An Introduction to Fluids Dynamics (Cambridge University Press, Cambridge, 1967)

    MATH  Google Scholar 

  3. J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales Scientifiques de l’École Normale Supérieure 14(4), 209–246 (1981)

    Article  MathSciNet  Google Scholar 

  4. L. Brandolese, Asymptotic behavior of the energy and pointwise estimates for solutions to the Navier-Stokes equations. Rev. Mat. Iberoam. 20(1), 223–256 (2004)

    Article  MathSciNet  Google Scholar 

  5. F. Charve, R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical Lp framework. Arch. Rat. Mech. Anal. 198(1), 233–271 (2010)

    Article  Google Scholar 

  6. J.-Y. Chemin, Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel. J. d’Anal. Math. 77, 27–50 (1999)

    Article  Google Scholar 

  7. J.-Y. Chemin, N. Lerner, Flot de champs de vecteurs non-lipschitziens et équations de Navier-Stokes. J. Differ. Equ. 121, 314–328 (1995)

    Article  Google Scholar 

  8. Q. Chen, C. Miao, Z. Zhang, Global well-posedness for the compressible Navier-Stokes equations with the highly oscillating initial velocity. Comm. Pure Appl. Math. 63(9), 1173–1224 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Q. Chen, C. Miao, Z. Zhang, On the ill-posedness of the compressible Navier-Stokes equations in the critical Besov spaces. Rev. Mat. Iberoam. 31(4), 1375–1402 (2015)

    Article  MathSciNet  Google Scholar 

  10. N. Chikami, R. Danchin, On the well-posedness of the full compressible Navier-Stokes system in critical Besov spaces. J. Differ. Equ. 258(10), 3435–3467 (2015)

    Article  MathSciNet  Google Scholar 

  11. R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141(3), 579–614 (2000)

    Article  MathSciNet  Google Scholar 

  12. R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases. Commun. Partial Differ. Equ. 26, 1183–1233 (2001)

    Article  MathSciNet  Google Scholar 

  13. R. Danchin, Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Archiv. Ration. Mech. Anal. 160(1), 1–39 (2001)

    Article  MathSciNet  Google Scholar 

  14. R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations. Ann. Sci. de l’École Normale Supérieure 35(1), 27–75 (2002)

    Article  MathSciNet  Google Scholar 

  15. R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions. Am. J. Math. 124(6), 1153–1219 (2002)

    Article  MathSciNet  Google Scholar 

  16. R. Danchin, On the uniqueness in critical spaces for compressible Navier-Stokes equations. NoDEA Nonlinear Differ. Equ. Appl. 12(1), 111–128 (2005)

    Article  MathSciNet  Google Scholar 

  17. R. Danchin, A Lagrangian approach for the compressible Navier-Stokes equations. Ann. de l’Institut Fourier 64, 753–791 (2014)

    Article  MathSciNet  Google Scholar 

  18. R. Danchin, B. Ducomet, On a simplified model for radiating flows. J. Evol. Equ. 14, 155–195 (2013)

    Article  MathSciNet  Google Scholar 

  19. R. Danchin, L. He, The incompressible limit in Lp type critical spaces. Math. Ann. (in press)

    Google Scholar 

  20. R. Danchin, P.B. Mucha, A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space. J. Funct. Anal. 256(3), 881–927 (2009)

    Article  MathSciNet  Google Scholar 

  21. R. Danchin, P.B. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density. Commun. Pure. Appl. Math. 65, 1458–1480 (2012)

    Article  MathSciNet  Google Scholar 

  22. R. Danchin, J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp framework. arXiv:1605.00893 (2016)

    Google Scholar 

  23. R. Danchin, P. Zhang, Inhomogeneous Navier-Stokes equations in the half-space, with only bounded density. J. Funct. Anal. 267(7), 2371–2436 (2014)

    Article  MathSciNet  Google Scholar 

  24. H. Fujita, T. Kato, On the Navier-Stokes initial value problem I. Archiv. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  Google Scholar 

  25. B. Haspot, Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces. J. Differ. Equ. 251, 2262–2295 (2011)

    Article  MathSciNet  Google Scholar 

  26. B. Haspot, Existence of global strong solutions in critical spaces for barotropic viscous fluids. Archiv. Ration. Mech. Anal. 202(2), 427–460 (2011)

    Article  MathSciNet  Google Scholar 

  27. D. Hoff, Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions. Commun. Pure Appl. Math. 55(11), 1365–1407 (2002)

    Article  MathSciNet  Google Scholar 

  28. D. Hoff, K. Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves. Z. Angew. Math. Phys. 48(4), 597–614 (1997)

    Article  MathSciNet  Google Scholar 

  29. P.-L. Lions, Compressible Models. Mathematical Topics in Fluid Dynamics, vol. 2 (Oxford University Press, Oxford, 1998)

    Google Scholar 

  30. P.-L. Lions, N. Masmoudi, Une approche locale de la limite incompressible. C. R. Acad. Sci. Paris Sér. I Math. 329(5), 387–392 (1999)

    Article  MathSciNet  Google Scholar 

  31. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Uni. 20, 67–104 (1980)

    Article  MathSciNet  Google Scholar 

  32. J. Nash, Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. de la Soc. Math. de France 90, 487–497 (1962)

    Article  MathSciNet  Google Scholar 

  33. M. Okita, Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations. J. Differ. Equ. 257, 3850–3867 (2014)

    Article  MathSciNet  Google Scholar 

  34. J. Serrin, On the uniqueness of compressible fluid motions. Archiv. Ration. Mech. Anal. 3, 271–288 (1959)

    Article  MathSciNet  Google Scholar 

  35. A. Valli, W. Zaja̧czkowski, Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103(2), 259–296 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Danchin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Danchin, R. (2018). Fourier Analysis Methods for the Compressible Navier-Stokes Equations. In: Giga, Y., Novotný, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-13344-7_49

Download citation

Publish with us

Policies and ethics