Skip to main content

Equations for Viscoelastic Fluids

  • Reference work entry
  • First Online:
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Abstract

This chapter aims at the mathematical theory of incompressible viscoelastic fluids and related complex fluid models. An energetic variational approach is employed to derive the hydrodynamics of complex fluids which focuses on the competition and coupling between different physical effects. Such a framework also provides guides to the corresponding analysis. This chapter includes those analytical results for both classical solutions with small initial data and weak solutions with large initial data for these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Agemi, Global existence of nonlinear elastic waves. Invent. Math. 142, 225–250 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Bae, K. Trivisa, On the Doi model for the suspensions of rod-like molecules in compressible fluids. Math. Mod. Methods Appl. Sci. 22, 1250027 (2012), 39pp

    Article  MathSciNet  MATH  Google Scholar 

  3. J.W. Barrett, E. Süli, Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: finitely extensible nonlinear bead-spring chains. Math. Mod. Methods Appl. Sci. 21, 1211–1289 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. J.W. Barrett, E. Süli, Existence and equilibration of global weak solutions to kinetic models for dilute polymers II: Hookean-type models. Math. Mod. Methods Appl. Sci. 22, 1150024 (2012), 84pp

    Article  MathSciNet  MATH  Google Scholar 

  5. J.W. Barrett, E. Süli, Existence of global weak solutions to finitely extensible nonlinear bead-spring chain models for dilute polymers with variable density and viscosity. J. Differ. Equ. 253, 3610–3677 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.W. Barrett, E. Süli, Existence of global weak solutions to compressible isentropic finitely extensible bead-spring chain models for dilute polymers. Math. Mod. Methods Appl. Sci. 26, 469–568 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.W. Barrett, E. Süli, Existence of global weak solutions to compressible isentropic finitely extensible nonlinear bead? Spring chain models for dilute polymers: the two-dimensional case. J. Differ. Equ. 261, 592–626 (2016)

    MATH  Google Scholar 

  8. J.W. Barrett, C. Schwab, E. Süli, Existence of global weak solutions for some polymeric flow models. Math. Mod. Methods Appl. Sci. 15, 939–983 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. M.Z. Bazant, K.T. Chu, B.J. Bayly, Current-voltage relations for electrochemical thin films. SIAM J. Appl. Math. 65, 1463–1484 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. J.T. Beale, J. Strain, Locally corrected semi-Lagrangian methods for Stokes flow with moving elastic interfaces. J. Comput. Phys. 227, 3896–3920 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. O. Bejaoui, M. Majdoub, Global weak solutions for some Oldroyd Models. J. Differ. Equ. 254, 660–685 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids. Volume 1: Fluid Mechanics, 2nd ed. (Wiley Interscience, New York, 1987)

    Google Scholar 

  13. M. Bulicek, J. Málek, E. Süli, Existence of global weak solutions to implicitly constituted kinetic models of incompressible homogeneous dilute polymers. Commun. Partial Differ. Equ. 38, 882–924 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Cabannes, Theoretical Magneto Fluid Dynamics (Academic, New York, 1970)

    Google Scholar 

  15. L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Califano, C. Chiuderi, Resistivity-independent dissipation of magnetrodydrodynamic waves in an inhomogeneous plasma. Phy. Rev. E 60(Part B), 4701–4707 (1999)

    Google Scholar 

  17. C. Cao, D. Regmi, J. Wu, The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion. J. Differ. Equ. 254, 2661–2681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Cao, J. Wu, B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion. SIAM J. Math. Anal. 46, 588–602 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. J.-Y. Chemin, N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 33, 84–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Chen, P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions. Commun. Partial Differ. Equ. 31, 1793–1810 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. C.H.A. Cheng, S. Shkoller, The interaction of the 3D Navier-Stokes equations with a moving nonlinear Koiter elastic shell. SIAM J. Math. Anal. 42, 1094–1155 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. C.H.A. Cheng, D. Coutand, S. Shkoller, Navier-Stokes equations interacting with a nonlinear elastic biofluid shell. SIAM J. Math. Anal. 39, 742–800 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. P.G. Ciarlet, Mathematical Elasticity. Volume I. Three-Dimensional Elasticity. Studies in Mathematics and Its Applications, vol. 20 (North-Holland, Amsterdam, 1988)

    Google Scholar 

  24. P.G. Ciarlet, Mathematical Elasticity. Volume III. Theory of Shells. Studies in Mathematics and Its Applications, vol. 29 (North-Holland, Amsterdam, 2000)

    Google Scholar 

  25. P. Constantin, Partial differential equation problems from simple to complex fluids. Nonlinearity 21, T239-T244 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Constantin, Remarks on complex fluid models, in Mathematical Aspects of Fluid Mechanics. London Mathematical Society Lecture Note Series, vol. 402 (Cambridge University Press, Cambridge 2012), pp. 70–87

    Google Scholar 

  27. P. Constantin, Complex fluids and Lagrangian particles, in Topics in Mathematical Fluid Mechanics. Lecture Notes in Mathematics, vol. 2073 (Springer, Heidelberg, 2013), pp. 1–21

    Google Scholar 

  28. P. Constantin, Lagrangian-Eulerian methods for uniqueness in hydrodynamic systems. Adv. Math. 278, 67–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Constantin, M. Kliegl, Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress. Arch. Ration. Mech. Anal. 206, 725–740 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Constantin, N. Masmoudi, Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D. Commun. Math. Phys. 278, 179–191 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Constantin, G. Seregin, Holder continuity of solutions of 2D Navier-Stokes equations with singular forcing, in Nonlinear Partial Differential Equations and Related Topics. American Mathematical Society Translations Series 2, vol. 229 (American Mathematical Society, Providence, 2010), pp. 87–95

    Google Scholar 

  32. P. Constantin, W. Sun, Remarks on Oldroyd-B and related complex fluid models. Commun. Math. Sci. 10, 33–73 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. T.G. Cowling, Magnetohydrodynamics (Hilger, London, 1976)

    MATH  Google Scholar 

  34. R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. R.J. DiPerna, P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics. International Series of Monographs on Physics, vol. 73 (Oxford University Press, New York, 1986)

    Google Scholar 

  37. Q. Du, C. Liu, R. Ryham, X. Wang, Energetic variational approaches in modeling vesicle and fluid interactions. Phys. D 238, 923–930 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Y. Du, C. Liu, Q. Zhang, Blow-up criterion for compressible visco-elasticity equations in three dimensional space. Commun. Math. Sci. 12, 473–484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Endo, Y. Giga, D. Gotz, C. Liu, Stability of a two-dimensional Poiseuille-type flow for a viscoelastic fluid (Preprint)

    Google Scholar 

  40. A. Eringen, S. Suhubi, Elastodynamics. Volume I. Finite Motions (Academic, New York/London, 1974)

    Google Scholar 

  41. M. Fei, W. Wang, P. Zhang, Z. Zhang, Dynamics of the nematic-isotropic sharp interface for the liquid crystal. SIAM J. Appl. Math. 75, 1700–1724 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Feireisl, Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and Its Applications, vol. 26 (Oxford University Press, Oxford, 2004)

    Google Scholar 

  43. E. Feireisl, A. Novotný, H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. C. Guillopé, J.C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15, 849–869 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Han, Y. Luo, W. Wang, P. Zhang, Z. Zhang, From microscopic theory to macroscopic theory: a systematic study on modeling for liquid crystals. Arch. Ration. Mech. Anal. 215, 741–809 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. C. Hao, T. Luo, A priori estimates for free boundary problem of incompressible inviscid magnetohydrodynamic flows. Arch. Ration. Mech. Anal. 212, 805–847 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. C. Hao, D. Wang, A priori estimates for the free boundary problem of incompressible neo-Hookean elastodynamics. arXiv:1403.1309

    Google Scholar 

  48. L. He, L. Xu, Global well-posedness for viscoelastic fluid system in bounded domains. SIAM J. Math. Anal. 42, 2610–2625 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. L. He, P. Zhang, L2 decay of solutions to a micro-macro model for polymeric fluids near equilibrium. SIAM J. Math. Anal. 40, 1905–1922 (2008/2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Hieber, Y. Naito, Y. Shibata, Global existence results for Oldroyd-B fluids in exterior domains. J. Differ. Equ. 252, 2617–2629 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. X. Hu, Global existence for two dimensional compressible magnetohydrodynamic flows with zero magnetic diffusivity. arXiv:1405.0274

    Google Scholar 

  52. X. Hu, Global existence for two dimensional incompressible magnetohydrodynamic flows with zero magnetic diffusivity. arXiv:1312.6749

    Google Scholar 

  53. X. Hu, F. Lin, Global solution to two dimensional incompressible viscoelastic fluid with discontinuous data. Commun. Pure Appl. Math. 69, 372–404 (2016)

    Article  MATH  Google Scholar 

  54. X. Hu, F. Lin, Scaling limit for compressible viscoelastic fluids, in Frontiers in Differential Geometry, Partial Differential Equations and Mathematical physics (World Scientific, Hackensack, 2014), pp. 243–269

    Book  Google Scholar 

  55. X. Hu, F. Lin, On the Cauchy problem for two dimensional incompressible viscoelastic flows. ArXiv:1601.03497

    Google Scholar 

  56. X. Hu, N. Masmoudi, Global solutions to repulsive Hookean elastodynamics. Arch. Ration. Mech. Anal. (To appear)

    Google Scholar 

  57. X. Hu, D. Wang, Global existence for the multi-dimensional compressible viscoelastic flows. J. Differ. Equ. 250, 1200–1231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. X. Hu, G. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows. SIAM J. Math. Anal. 45, 2815–2833 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. X. Hu, H. Wu, Global solution to the three-dimensional compressible flow of liquid crystals. SIAM J. Math. Anal. 45(5), 2678–2699 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. X. Hu, H. Wu, Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discret. Contin. Dyn. Syst. 35, 3437–3461 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. X. Hu, Z. Lei, F. Lin, On Magnetohydrodynamics with partial magnetic dissipation near equilibrium, in Recent Developments in Geometry and Analysis, Advanced Lectures in Mathematics (ALM), vol. 23 (International Press, Somerville, 2012), pp. 155–164

    Google Scholar 

  62. J. Huang, F. Lin, C. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in \(\mathbb{R}^{2}\). Commun. Math. Phys. 331, 805–850 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. F. John, Rotation and strain. Commun. Pure Appl. Math. 14, 391–413 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  64. B. Jonov, T. Sideris, Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Commun. Pure Appl. Anal. 14, 1407–1442 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  65. D.D. Joseph, Fluid Dynamics of Viscoelastic Liquids. Applied Mathematical Sciences, vol. 84 (Springer, New York, 1990)

    Book  MATH  Google Scholar 

  66. B. Jourdain, T. Leliévre, C. Le Bris, Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal. 209, 162–193 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  67. B. Jourdain, C. Le Bris, T. Leliévre, F. Otto, Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal. 181, 97–148 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  68. S. Kawashima, Y. Shibata, Global existence and exponential stability of small solutions to nonlinear viscoelasticity. Commun. Math. Phys. 148, 189–208 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  69. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media. Course of Theoretical Physics, vol. 8, 2nd edn. (Addison-Wesley, Reading/Pergamon/Oxford/London/New York/Paris, 1984)

    Chapter  Google Scholar 

  70. R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1995)

    Google Scholar 

  71. C.-C. Lee, H. Lee, Y. Hyon, T.-C. Lin, C. Liu, New Poisson-Boltzmann type equations: one-dimensional solutions. Nonlinearity 24, 431–458 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  72. Z. Lei, Global Well-posedness of incompressible elastodynamics in 2D. arXiv:1402.6605

    Google Scholar 

  73. Z. Lei, On 2D viscoelasticity with small strain. Arch. Ration. Mech. Anal. 198, 13–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  74. Z. Lei, Rotation-strain decomposition for the incompressible viscoelasticity in two dimensions. Discret. Contin. Dyn. Syst. 34, 2861–2871 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  75. Z. Lei, On axially symmetric incompressible magnetohydrodynamics in three dimensions. J. Differ. Equ. 259, 3202–3215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  76. Z. Lei, F. Wang, Uniform bound of the highest energy for the three dimensional incompressible elastodynamics. Arch. Ration. Mech. Anal. 216, 593–622 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  77. Z. Lei, C. Liu, Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain. Commun. Math. Sci. 5, 595–616 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  78. Z. Lei, C. Liu, Y. Zhou, Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal. 188, 371–398 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  79. Z. Lei, Y. Zhou, T. Sideris, Almost global existence for 2-D incompressible isotropic elastodynamics. Trans. Am. Math. Soc. 367, 8175–8197 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  80. F.H. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem. Commun. Pure Appl. Math. 51, 241–257 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  81. F.H. Lin, Some analytical issues for elastic complex fluids. Commun. Pure Appl. Math. 65, 893–919 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  82. F.H. Lin, C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three. Commun. Pure Appl. Math. 69, 1532–1571 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  83. F.H. Lin, C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2029), 20130361, (2014), 18pp

    Article  MathSciNet  MATH  Google Scholar 

  84. F.H. Lin, P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system. Commun. Pure Appl. Math. 61, 539–558 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  85. F.H. Lin, P. Zhang, The FENE dumbbell model near equilibrium. Acta Math. Sin. (Engl. Ser.) 24, 529–538 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  86. F.H. Lin, P. Zhang, Global small solutions to an MHD-type system: the three-dimensional case. Commun. Pure Appl. Math. 67, 531–580 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  87. F.H. Lin, T. Zhang, Global small solutions to a complex fluid model in 3D. Arch. Ration. Mech. Anal. 216, 905–920 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  88. F.-H. Lin, C. Liu, P. Zhang, On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58, 1437–1471 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  89. F.-H. Lin, C. Liu, P. Zhang, On a micro-macro model for polymeric fluids near equilibrium. Commun. Pure Appl. Math. 60, 838–866 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  90. F.H. Lin, P. Zhang, Z. Zhang, On the global existence of smooth solution to the 2D FENE dumbbell model. Commun. Math. Phys. 277, 531–553 (2008)

    Article  MATH  Google Scholar 

  91. F.H. Lin, J. Lin, C. Wang, Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197, 297–336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  92. J. Lin, B. Lai, C. Wang, Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three. SIAM J. Math. Anal. 47, 2952–2983 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  93. F.H. Lin, L. Xu, P. Zhang, Global small solutions to 2-D incompressible MHD system. J. Differ. Equ. 259, 5440–5485 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  94. P.L. Lions, Mathematical Topics in Fluid Mechanics, Volume 2. Compressible Models. Oxford Lecture Series in Mathematics and Its Applications, vol. 10, Oxford Science Publications (The Clarendon Press, Oxford/Oxford University Press, New York, 1998)

    Google Scholar 

  95. P.L. Lions, N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math. Ser. B 21, 131–146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  96. P.-L. Lions, N. Masmoudi, Global existence of weak solutions to some micro-macro models. C. R. Math. Acad. Sci. Paris 345, 15–20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  97. C. Liu, N.J. Walkington, An Eulerian description of fluids containing visco-elastic particles. Arch. Ration. Mech. Anal. 159, 229–252 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  98. A. Majda, A. Bertozzi, Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics, vol. 27 (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  99. N. Masmoudi, Well-posedness for the FENE dumbbell model of polymeric flows. Commun. Pure Appl. Math. 61, 1685–1714 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  100. N. Masmoudi, Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent. Math. 191, 427–500 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  101. A. Novotný, I. Straskraba, Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and Its Applications, vol. 27 (Oxford University Press, Oxford, 2004)

    Google Scholar 

  102. J.G. Oldroyd, On the formulation of rheological equations of state. Proc. R. Soc. Lond. Ser. A 200, 523–541 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  103. R.G. Owens, T.N. Phillips, Computational Rheology (Imperial College Press, London, 2002)

    Book  MATH  Google Scholar 

  104. G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal. 9, 399–418 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  105. J. Qian, Z. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch. Ration. Mech. Anal. 198, 835–868 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  106. X. Ren, J. Wu, Z. Xiang, Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion. J. Funct. Anal. 267, 503–541 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  107. M. Renardy, An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal. 22, 313–327 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  108. M. Renardy, On the stability of plane parallel viscoelastic shear flows in the limit of infinite Weissenberg and Reynolds numbers. J. Non-Newtonian Fluid Mech. 165, 1670–1676 (2010)

    Article  MATH  Google Scholar 

  109. M. Renardy, W.J. Hrusa, J.A. Nohel, Mathematical Problems in Visoelasticity. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 35 (Longman Scientific & Technical, Harlow/Wiley, New York, 1987)

    Google Scholar 

  110. T.C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves. Ann. Math. (2) 151, 849–874 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  111. T.C. Sideris, B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit. Commun. Pure Appl. Math. 58, 750–788 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  112. T.C. Sideris, B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics. Commun. Pure Appl. Math. 60, 1707–1730 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  113. Y. Sun, Z. Zhang, Global well-posedness for the 2D micro-macro models in the bounded domain. Commun. Math. Phys. 303, 361–383 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  114. B. Thomases, M. Shelley, Transition to mixing and oscillations in a Stokesian viscoelastic flow. Phys. Rev. Lett. 103, 094501 (2009)

    Article  Google Scholar 

  115. W. Wang, P. Zhang, Z. Zhang, Well-posedness of hydrodynamics on the moving elastic surface. Arch. Ration. Mech. Anal. 206, 953–995 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  116. W. Wang, P. Zhang, Z. Zhang, Well-posedness of the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 210, 837–855 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  117. W. Wang, P. Zhang, Z. Zhang, The small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equation. Commun. Pure Appl. Math. 68, 1326–1398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  118. W. Wang, P. Zhang, Z. Zhang, Rigorous derivation from Landau-de Gennes theory to Ericksen-Leslie theory. SIAM J. Math. Anal. 47, 127–158 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  119. E. Weinan, T. Li, P. Zhang, Well-posedness for the dumbbell model of polymeric fluids. Commun. Math. Phys. 248, 409–427 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  120. H. Wu, X. Xu, C. Liu, Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties. Calc. Var. Partial Differ. Equ. 45, 319–345 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  121. H. Wu, X. Xu, C. Liu, On the general Ericksen-Leslie system: Parodi’s relation, well-posedness and stability. Arch. Ration. Mech. Anal. 208, 59–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  122. H. Wu, T. Lin, C. Liu, Diffusion limit of kinetic equations for multiple species charged particles. Arch. Ration. Mech. Anal. 215, 419–441 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  123. J. Wu, Y. Wu, X. Xu, Global small solution to the 2D MHD system with a velocity damping term. SIAM J. Math. Anal. 47, 2630–2656 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  124. L. Xu, P. Zhang, Global small solutions to three-dimensional incompressible MHD system. SIAM J. Math. Anal. 47, 26–65 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  125. L. Xu, P. Zhang, Z. Zhang, Global solvability of a free boundary three-dimensional incompressible viscoelastic fluid system with surface tension. Arch. Ration. Mech. Anal. 208, 753–803 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  126. P. Yue, J. Feng, C. Liu, J. Shen, A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  127. H. Zhang, P. Zhang, Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ration. Mech. Anal. 181, 373–400 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  128. R. Zi, D. Fang, T. Zhang, Global solution to the incompressible Oldroyd-B model in the critical Lp framework: the case of the non-small coupling parameter. Arch. Ration. Mech. Anal. 213, 651–687 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Xianpeng Hu is partially supported by the start-up grant from City University of Hong Kong and the ECS grant 9048035. The work of Fanghua Lin is partially supported by the NSF grants DMS-1501000. The work of Chun Liu is partially supported by NSF grants DMS-141200 and DMS-1216938.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianpeng Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hu, X., Lin, FH., Liu, C. (2018). Equations for Viscoelastic Fluids. In: Giga, Y., Novotný, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-13344-7_25

Download citation

Publish with us

Policies and ethics