Nanoparticle Arrays

Living reference work entry


Arrays of metal nanoparticles in an organic matrix have attracted a lot of interest due to their diverse electronic and optoelectronic properties. By varying parameters such as the nanoparticle material, the matrix material, the nanoparticle size, and the interparticle distance, the electronic behavior of the nanoparticle array can be substantially tuned and controlled. For strong tunnel coupling between adjacent nanoparticles, the assembly exhibits conductance properties similar to the bulk properties of the nanoparticle material. When the coupling between the nanoparticles is reduced, a metal insulator transition is observed in the overall assembly. Recent work demonstrates that nanoparticle arrays can be further utilized to incorporate single molecules, such that the nanoparticles act as electronic contacts to the molecules. Furthermore, via the excitation of the surface plasmon polaritons, the nanoparticles can be optically excited and electronically read out.


Nanoparticle array Electronic and optoelectronic properties Surface plasmon resonance Coulomb blockade Metal insulator transition Plasmonic Bolometric Molecular photoconductance 



Numerous colleagues have contributed to the work presented here. Particular thanks goes to Claire Barrett, Laetitia Bernard, Jianhui Liao, Marcel Mayor, Sense Jan van der Molen, and Christian Schönenberger. For critical reading and comments, we thank Jianhui Liao, Sense Jan van der Molen, Ralph Stoop, Martin Niedermeier, and Anton Vladyka. Following agencies are acknowledged for financial support: the Swiss NCCR “Nanoscale Science,” the Swiss National Science Foundation (SNSF), the European Science Foundation (ESF) through the Eurocores Program on Self-Organized Nanostructures (SONS), the Gebert Rüf Foundation, the DFG excellence cluster “Nanosystems Initiative Munich” (NIM), and the European Commission (EC) via the FP7 projects – “FUNMOLS” (ITN) no. 212942, “FUNMOL” no. 213382, “HYSENS” no. 263091, “NanoREAL” (ERC grant) no. 306754, “SYMONE” no. 318597, and “MOLESCO” (ITN) no. 606728.


  1. 1.
    A.N. Shipway, E. Katz, I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem. Phys. Chem. 1, 18 (2000)Google Scholar
  2. 2.
    D.V. Talapin, J.-S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Homberger, U. Simon, On the application potential of gold nanoparticles in nanoelectronics and biomedicine Phil. Trans. R. Soc. A 368, 1405–1453 (2010)CrossRefGoogle Scholar
  4. 4.
    C.B. Murray, C.R. Kagan, M.G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545 (2000)CrossRefGoogle Scholar
  5. 5.
    A.R. Tao, S. Habas, P.D. Yang, Shape control of colloidal metal nanocrystals. Small 4, 310 (2008)CrossRefGoogle Scholar
  6. 6.
    M. Grzelczak, J. Perez-Juste, P. Mulvaney, L.M. Liz-Marzan, Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783 (2008)CrossRefGoogle Scholar
  7. 7.
    R. Sardar, A.M. Funston, P. Mulvaney, R.W. Murray, Gold nanoparticles: past, present, and future. Langmuir 25, 13480 (2009)CrossRefGoogle Scholar
  8. 8.
    R.L. Whetten, J.T. Khoury, M.M. Alvarez, S. Murthy, I. Vezmar, Z.L. Wang, P.W. Stephens, C.L. Clevelend, W.D. Luedtke, U. Landman, Nanocrystal gold molecules. Adv. Mater. 8, 428 (1996)CrossRefGoogle Scholar
  9. 9.
    L. Motte, F. Billoudet, M.P. Pileni, Self-assembled monolayer of nanosized particles differing by their sizes. J. Phys. Chem. 99, 16425 (1995)CrossRefGoogle Scholar
  10. 10.
    C.J. Kiely, J. Fink, M. Brust, D. Bethell, D.J. Schiffrin, Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396, 444 (1998)CrossRefGoogle Scholar
  11. 11.
    M. Giersig, P. Mulvaney, Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9, 3408 (1993)CrossRefGoogle Scholar
  12. 12.
    P.C. Ohara, D.V. Leff, J.R. Heath, W.M. Gelbart, Crystallization of opals from polydisperse nanoparticles. Phys. Rev. Lett. 75(19), 3466 (1995)CrossRefGoogle Scholar
  13. 13.
    S. Narayanan, J. Wang, Dynamical self-assembly of nanocrystal superlattices during colloidal droplet evaporation by in situ small angle X-ray scattering. Phys. Rev. Lett. 93(13), 135503 (2004)CrossRefGoogle Scholar
  14. 14.
    T.P. Bigioni, X.-M. Lin, T.T. Nguyen, E.I. Corwing, T.A. Witten, H.M. Jaeger, Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat. Mater. 5, 265 (2006)CrossRefGoogle Scholar
  15. 15.
    X.M. Lin, H.M. Jaeger, C.M. Sorensen, K.J. Klabunde, Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J. Phys. Chem. B 105, 3353–3357 (2001)CrossRefGoogle Scholar
  16. 16.
    J.P. Bourgoin, C. Kergueris, E. Lefevre, S. Palacin, Langmuir–Blodgett films of thiol-capped gold nanoclusters: fabrication and electrical properties. Thin Solid Films 327–329, 515 (1998)CrossRefGoogle Scholar
  17. 17.
    G. Markovich, C.P. Collier, S.E. Hendrichs, F. Remacle, D.R. Levine, J.R. Heath, Architectonic quantum dot solids. Acc. Chem. Res. 32, 415 (1999)CrossRefGoogle Scholar
  18. 18.
    J.J. Brown, J.A. Porter, C.P. Daghlian, U.J. Gibson, Ordered arrays of amphiphilic gold nanoparticles in langmuir monolayers. Langmuir 17, 7966 (2001)CrossRefGoogle Scholar
  19. 19.
    J.R. Heath, C.M. Knobler, D.V. Leff, Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant. J. Phys. Chem. B 101, 189–197 (1997)CrossRefGoogle Scholar
  20. 20.
    I. Langmuir, K.B. Blodgett, A new method of investigating unimolecular films. Kolloid Z. 73, 258–263 (1935)CrossRefGoogle Scholar
  21. 21.
    S. Huang, H. Sakaue, S. Shingubara, T. Takahagi, Self-organization of a two-dimensional array of gold nanodots encapsulated by alkanethiol. Jpn. J. Appl. Phys. 37, 7198 (1998)CrossRefGoogle Scholar
  22. 22.
    V. Santhanam, J. Liu, R. Agarwal, R. Andres, Self-assembly of uniform monolayer arrays of nanoparticles. Langmuir 19, 7881–7887 (2003)CrossRefGoogle Scholar
  23. 23.
    P. Müller-Buschbaum, Grazing incidence small-angle X-ray scattering: an advanced scattering technique for the investigation of nanostructured polymer films. Anal. Bioanal. Chem. 376, 3 (2003)Google Scholar
  24. 24.
    J.R. Levine, J.B. Cohen, Y.W. Chung, P. Georgopoulos, Grazing incidence small-angle X-ray scattering: new tool for studying thin film growth. J. Appl. Crystallogr. 22, 528 (1989)CrossRefGoogle Scholar
  25. 25.
    G. Renaud, R. Lazzari, F. Leroy, Probing surface and interface morphology with grazing incidence small angle X-ray scattering. Surf. Sci. Rep. 64, 255 (2009)CrossRefGoogle Scholar
  26. 26.
    M.A. Mangold, M.A. Niedermeier, M. Rawolle, B. Dirks, J. Perlich, S.V. Roth, A.W. Holleitner, P. Müller-Buschbaum, Correlation between structure and optoelectronic properties in a two-dimensional nanoparticle assembly. Phys. Status Solidi RRL 5, 16 (2011)CrossRefGoogle Scholar
  27. 27.
    R. Lazzari, IsGISAXS: a program for grazing-incidence small-angle X-ray scattering analysis of supported islands. J. Appl. Crystallogr. 35, 406 (2002)CrossRefGoogle Scholar
  28. 28.
    I.S. Beloborodov, A.V. Lopatin, V.M. Vinokur, K.B. Efetov, Granular electronic systems. Rev. Mod. Phys. 79, 469 (2007)CrossRefGoogle Scholar
  29. 29.
    S.-H. Kim, G. Medeiros-Ribeiro, D.A.A. Ohlberg, R.S. Williams, J.R. Heath, Individual and collective electronic properties of Ag nanocrystals. J. Phys. Chem. B 103, 10341 (1999)CrossRefGoogle Scholar
  30. 30.
    A. Tao, P. Sinsermsuksasul, P. Yang, Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2, 435 (2007)CrossRefGoogle Scholar
  31. 31.
    L. Bernard, Ph.D. Thesis, University of Basel, 2011.
  32. 32.
    H. Liu, B.S. Mun, G. Thornton, S.R. Isaacs, Y.-S. Shon, D.F. Ogletree, M. Salmeron, Electronic structure of ensembles of gold nanoparticles: size and proximity effects. Phys. Rev. B 72, 155430 (2005)CrossRefGoogle Scholar
  33. 33.
    A. Zabet-Khosousi, P.-E. Trudeau, Y. Suganuma, A.-A. Dhirani, B. Statt, Metal to insulator transition in films of molecularly linked gold nanoparticles. Phys. Rev. Lett. 96, 156403 (2006)CrossRefGoogle Scholar
  34. 34.
    J. Liao, L. Bernard, M. Langer, C. Schönenberger, M. Calame, Reversible formation of molecular junctions in 2D nanoparticle arrays. Adv. Mater. 18, 2444 (2006)CrossRefGoogle Scholar
  35. 35.
    M. Mangold, Ph.D. Thesis, Technische Universität München, 2011Google Scholar
  36. 36.
    L. Bernard, Y. Kamdzhilov, M. Calame, S.J. van der Molen, J. Liao, C. Schönenberger, Spectroscopy of molecular junction networks obtained by place exchange in 2d nanoparticle arrays. J. Phys. Chem. C 111, 18445–18450 (2007)CrossRefGoogle Scholar
  37. 37.
    J. Liao, Y. Zhou, C. Huang, Y. Wang, L. Peng, Fabrication, transfer, and transport properties of monolayered freestanding nanoparticle sheets. Small 7(5), 583–587 (2011)CrossRefGoogle Scholar
  38. 38.
    J. Liao, J. Agustsson, S. Wu, O. Jeannin, Y.-F. Ran, S.-X. Liu, S. Decurtins, Y. Leroux, M. Mayor, C. Schönenberger, M. Calame, Cyclic conductance switching in networks of redox-active molecular junctions. Nano Lett. 10(3), 759–764 (2010)CrossRefGoogle Scholar
  39. 39.
    A. Zabet-Khosousi, A.A. Dhirani, Charge transport in nanoparticle assemblies. Chem. Rev. 108, 4072 (2008)CrossRefGoogle Scholar
  40. 40.
    N.V. Smith, G.K. Wertheim, S. Hüfner, M.M. Traum, Photoemission spectra and band structures of d-band metals. IV. X-ray photoemission spectra and densities of states in Rh, Pd, Ag, Ir, Pt, and Au. Phys. Rev. B 10, 3197 (1974)CrossRefGoogle Scholar
  41. 41.
    A.J. Quinn, P. Beecher, D. Iacopino, L. Floyd, G. De Marzi, E.V. Shevchenko, H. Weller, G. Redmond, Manipulating the charging energy of nanocrystal arrays. Small 1, 613 (2005)CrossRefGoogle Scholar
  42. 42.
    K. Elteto, E.G. Antonyan, T.T. Nguyen, H.M. Jaeger, Model for the onset of transport in systems with distributed thresholds for conduction. Phys. Rev. B 71, 064206 (2005)CrossRefGoogle Scholar
  43. 43.
    P. Beecher, A.J. Quinn, E.V. Shevchenko, H. Weller, G. Redmond, Insulator-to-metal transition in nanocrystal assemblies driven by in situ mild thermal annealing. Nano Lett. 4, 1289 (2004)CrossRefGoogle Scholar
  44. 44.
    G. Markovich, C.P. Collier, J.R. Heath, Reversible metal-insulator transition in ordered metal nanocrystal monolayers observed by impedance spectroscopy. Phys. Rev. Lett. 80, 3807 (1998)CrossRefGoogle Scholar
  45. 45.
    A.A. Middleton, N.S. Wingreen, Collective transport in arrays of small metallic dots. Phys. Rev. Lett. 71, 3198 (1993)CrossRefGoogle Scholar
  46. 46.
    R. Parthasarathy, X.-M. Lin, H.M. Jaeger, Electronic transport in metal nanocrystal arrays: the effect of structural disorder on scaling behavior. Phys. Rev. Lett. 87, 186807 (2001)CrossRefGoogle Scholar
  47. 47.
    R. Parthasarathy, X.-M. Lin, K. Elteto, T.F. Rosenbaum, H.M. Jaeger, Percolating through networks of random thresholds: finite temperature electron tunneling in metal nanocrystal arrays. Phys. Rev. Lett. 92, 076801 (2004)CrossRefGoogle Scholar
  48. 48.
    J.C. Wierman, Adv. Appl. Probab. 13, 298 (1981)CrossRefGoogle Scholar
  49. 49.
    B. Abeles, P. Sheng, M.D. Coutts, Y. Arie, Structural and electrical properties of granular metal films. Adv. Phys. 24, 407 (1975)CrossRefGoogle Scholar
  50. 50.
    T.B. Tran, I.S. Beloborodov, X.M. Lin, T.P. Bigioni, V.M. Vinokur, H.M. Jaeger, Multiple cotunneling in large quantum dot arrays. Phys. Rev. Lett. 95, 076806 (2005)CrossRefGoogle Scholar
  51. 51.
    A.L. Efros, B.I. Shklovskii, Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C Solid State Phys. 8, L49 (1975)CrossRefGoogle Scholar
  52. 52.
    M.J. Hostetler, A.C. Templeton, R.W. Murray, Langmuir 15, 3782 (1999)CrossRefGoogle Scholar
  53. 53.
    S. Wu, R. Huber, M.T. Gonzalez, S. Grunder, M. Mayor, C. Schönenberger, M. Calame, Molecular junctions based on aromatic coupling. Nat. Nanotechnol. 3, 569–574 (2008)CrossRefGoogle Scholar
  54. 54.
    J. Liao, M. Mangold, S. Grunder, M. Mayor, C. Schönenberger, M. Calame, Interlinking Au nanoparticles in 2D arrays via conjugated dithiolated molecules. New J. Phys. 10, 065019 (2008)CrossRefGoogle Scholar
  55. 55.
    J. Agusstsson, Ph.D. Thesis, University of Basel, 2011.
  56. 56.
    M. Šuvakov, B. Tadić, Modeling collective charge transport in nanoparticle assemblies. J. Phys. Condens. Matter 22(16), 163201 (2010)CrossRefGoogle Scholar
  57. 57.
    C. George, I. Szleifer, M. Ratner, Multiple-time-scale motion in molecularly linked nanoparticle arrays. ACS Nano 7(1), 108 (2013)CrossRefGoogle Scholar
  58. 58.
    J.-F. Dayen, E. Devid, M.V. Kamalakar, D. Golubev, C. Guédon, V. Faramarzi, B. Doudin, S.J. van der Molen, Adv. Mater. 25, 400 (2013)CrossRefGoogle Scholar
  59. 59.
    G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377 (1908)CrossRefGoogle Scholar
  60. 60.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin/Heidelberg, 1995)CrossRefGoogle Scholar
  61. 61.
    L. Novotny, B. Hecht, Principles of Nano Optics (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  62. 62.
    R.C. Weast, D.R. Lide (eds.), Handbook of Chemistry and Physics, 70th edn. (CRC, Boca Raton, 1990)Google Scholar
  63. 63.
    S.K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797 (2007)CrossRefGoogle Scholar
  64. 64.
    U. Kreibig, L. Genzel, Optical absorption of small metallic particles. Surf. Sci. 156, 678 (1985)CrossRefGoogle Scholar
  65. 65.
    L. Genzel, T.P. Martin, U. Kreibig, Dielectric function and plasma resonances of small metal particles. Zeitschrift für Physik B Condensed Matter 21, 339 (1975)CrossRefGoogle Scholar
  66. 66.
    L. Genzel, U. Kreibig, Dielectric function and infrared absorption of small metal particles. Zeitschrift für Physik B Condensed Matter 37, 93 (1980)CrossRefGoogle Scholar
  67. 67.
    M. Quinten, Optical constants of gold and silver clusters in the spectral range between 1.5 eV and 4.5 eV. Zeitschrift für Physik B Condensed Matter 101, 211 (1996)CrossRefGoogle Scholar
  68. 68.
    J. Cao, Y. Gao, H.E. Elsayed-Ali, R.J.D. Miller, D.A. Mantell, Femtosecond photoemission study of ultrafast electron dynamics in single crystal Au(111) films. Phys. Rev. B 58, 10948 (1998)CrossRefGoogle Scholar
  69. 69.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Thomson Learning, London, 2003)Google Scholar
  70. 70.
    J.C. Garnett, Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. A 203, 385 (1904)CrossRefGoogle Scholar
  71. 71.
    L. Genzel, T.P. Martin, Infrared absorption by surface phonons and surface plasmons in small crystals. Surf. Sci. 34, 33 (1973)CrossRefGoogle Scholar
  72. 72.
    T. Ung, L.M. Liz-Marzán, P. Mulvaney, Gold nanoparticle thin films. Colloids Surf. A Physicochem. Eng. Asp. 202, 119 (2002)CrossRefGoogle Scholar
  73. 73.
    N.E. Christensen, B.O. Seraphin, Relativistic band calculation and the optical properties of gold. Phys. Rev. B 4, 3321 (1971)CrossRefGoogle Scholar
  74. 74.
    M.A. Mangold, C. Weiss, M. Calame, A.W. Holleitner, Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers. Appl. Phys. Lett. 94, 161104 (2009)CrossRefGoogle Scholar
  75. 75.
    P. Banerjee, D. Conklin, S. Nanayakkara, T.H. Park, M.J. Therien, D.A. Bonnell, Plasmon-induced electrical conduction in molecular devices. ACS Nano 4, 1019 (2010)CrossRefGoogle Scholar
  76. 76.
    H. Chen, G.C. Schatz, M.A. Rattner, Experimental and theoretical studies of plasmon–molecule interactions. Rep. Prog. Phys. 75, 096402 (2012)CrossRefGoogle Scholar
  77. 77.
    A.O. Govorov, H. Zhang, Y.K. Gun’Ko, Theory of photo-injection of hot plasmonic carriers in metal–semiconductor nanostructures and surface molecules. J. Phys. Chem. C 117, 16616 (2013)CrossRefGoogle Scholar
  78. 78.
    H. Nakanishi, K.J.M. Bishop, B. Kowalczyk, A. Nitzan, E.A. Weiss, K.V. Tretiakov, M.M. Apodaca, R. Klajn, J.F. Stoddart, B.A. Grzybowski, Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature 460, 371 (2009)CrossRefGoogle Scholar
  79. 79.
    A.O. Govorov, H.H. Richardson, Generating heat with metal nanoparticles. Nano Today 2, 30 (2007)CrossRefGoogle Scholar
  80. 80.
    A.O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, N.A. Kotov, Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84 (2006)CrossRefGoogle Scholar
  81. 81.
    M.A. Mangold, C. Weiss, B. Dirks, A.W. Holleitner, Optical field-enhancement in metal nanoparticle arrays contacted by electron beam induced deposition. Appl. Phys. Lett. 98, 243108 (2011)CrossRefGoogle Scholar
  82. 82.
    Q. Park, Optical antennas and plasmonics. Contemp. Phys. 50, 407 (2009)CrossRefGoogle Scholar
  83. 83.
    M.A. Mangold, M. Calame, M. Mayor, A.W. Holleitner, Negative differential photoconductance in gold nanoparticle arrays in the Coulomb blockade regime. ACS Nano 6, 4181 (2012)CrossRefGoogle Scholar
  84. 84.
    D.C. Guhr, D. Rettinger, J. Boneberg, A. Erbe, P. Leiderer, E. Scheer, Influence of laser light on electronic transport through atomic-size contacts. Phys. Rev. Lett. 99, 086801 (2007)CrossRefGoogle Scholar
  85. 85.
    G. Noy, A. Ophir, Y. Selzer, Response of molecular junctions to surface plasmon polaritons. Angew. Chem. Int. Ed. 49, 5734 (2010)CrossRefGoogle Scholar
  86. 86.
    S.J. van der Molen, J. Liao, T. Kudernac, J.S. Agustsson, L. Bernard, M. Calame, B.J. van Wees, B.L. Feringa, C. Schönenberger, Light-controlled conductance switching of ordered metal-molecule-metal devices. Nano Lett. 9, 76 (2009)CrossRefGoogle Scholar
  87. 87.
    E.I. López-Martínez, L.M. Rodríguez-Valdez, N. Flores-Holguín, A. Márquez-Lucero, D. Glossman-Mitnik, Theoretical study of electronic properties of organic photovoltaic materials. J. Comput. Chem. 30, 1027 (2009)CrossRefGoogle Scholar
  88. 88.
    M.A. Mangold, M. Calame, M. Mayor, A.W. Holleitner, Resonant photoconductance of molecular junctions formed in gold nanoparticle arrays. J. Am. Chem. Soc. 133, 12185–12191 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.IRsweep GmbHc/o ETH Zurich, Institute für Quantum ElectronicsZürichSwitzerland
  2. 2.Walter Schottky Institut and Physik-DepartmentTechnische Universität MünchenGarchingGermany
  3. 3.Nanosystems Initiative Munich (NIM)MunichGermany
  4. 4.Department of Physics and Swiss Nanoscience InstituteUniversity of BaselBaselSwitzerland

Personalised recommendations