Skip to main content

Wet Media Milling: An Effective Way to Solve Drug Solubility Issue

  • Living reference work entry
  • First Online:

Abstract

Drug synthesis, high-throughput screening generates billions of poorly soluble drugs which are neglected in further developments due to solubility issues. In the last 20 years, nanonization by milling is being effectively used commercially to save these drugs by overcoming solubility problems in commercial way. Various labs at industry and academic level successfully investigated milling technique alone and in combination with other techniques to reduce particle size, thereby increasing the dissolution velocity of drug. Milling offers ease of production, efficient control of production parameters, freedom of small to industrial batch size, liberty to produce highly concentrated suspensions, and improved stability of final product. Nanonized slurries exhibited promising results in vitro and in vivo and many fold increase in bioavailability. Nanosuspensions are investigated for organ or cellular delivery in various diseases like HIV/AIDS, malaria, and other infectious disease conditions. The issue of metal abrasion and contamination is now nullified by effective engineering solutions. In this chapter, recent updates on milling techniques and their applications in pharmaceutical field are discussed.

This is a preview of subscription content, log in via an institution.

References

  1. T. Niwa, Y. Nakanishi, K. Danjo, One-step preparation of pharmaceutical nanocrystals using ultra cryo-milling technique in liquid nitrogen. Eur. J. Pharm. Sci. 41, 78–85 (2010)

    Article  Google Scholar 

  2. S. Sugimoto, T. Niwa, Y. Nakanishi, K. Danjo, Novel ultra-cryo milling and co-grinding technique in liquid nitrogen to produce dissolution-enhanced nanoparticles for poorly water-soluble drugs. Chem. Pharm. Bull. 60, 325–333 (2012)

    Article  Google Scholar 

  3. S. Sugimoto, T. NIWA, Y. Nakanishi, K. Danjo, Development of a novel ultra cryo-milling technique for a poorly water-soluble drug using dry ice beads and liquid nitrogen. Int. J. Pharm. 426, 162–169 (2012)

    Article  Google Scholar 

  4. G. Liversidge. Milling methods – nanoCrystalsTM. IIR drug delivery partnershipsTM meeting, workshop “Nanotechnology – solid particles, lipids and nanocomplexes”. Cologne (2003)

    Google Scholar 

  5. L. Peltonen, J. Hirvonen, Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J. Pharm. Pharmacol. 62, 1569–1579 (2010)

    Article  Google Scholar 

  6. R. Shegokar, R.H. Müller, Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm. 399, 129–139 (2010)

    Article  Google Scholar 

  7. J. Salazar, R.H. Müller, J.P. Möschwitzer. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets. Eur. J. Pharm. Sci. 49(4), 565–577 (2013). doi: 10.1016/j.ejps.2013.04.003. Epub 2013 Apr 12.

    Article  Google Scholar 

  8. J.P. Moschwitzer. Drug nanocrystals in the commercial pharmaceutical development process. Int. J. Pharm. 453(1):142–156 (2012)

    Google Scholar 

  9. M. Kakran, N.G. Sahoo, L. Li, Z. Judeh, Dissolution of artemisinin/polymer composite nanoparticles fabricated by evaporative precipitation of nanosuspension. J. Pharm. Pharmacol. 62, 413–421 (2010)

    Google Scholar 

  10. Y. Wang, L. Wang, Z. Liu, D. Zhang, Q. Zhang, In vivo evaluation of silybin nanosuspensions targeting liver. J. Biomed. Nanotechnol. 8, 760–769 (2012)

    Article  Google Scholar 

  11. Y. Wang, D. Zhang, Z. Liu, G. Liu, C. Duan, L. Jia, F. Feng, X. Zhang, Y. Shi, Q. Zhang, In vitro and in vivo evaluation of silybin nanosuspensions for oral and intravenous delivery. Nanotechnology 21, 155104 (2010)

    Article  Google Scholar 

  12. L. Wang, M. Li, N. Zhang, Folate-targeted docetaxel-lipid-based-nanosuspensions for active-targeted cancer therapy. Int. J. Nanomedicine 7, 3281–3294 (2012)

    Google Scholar 

  13. S.E. Lee, S.F. Bairstow, J.O. Werling, M.V. Chaubal, L. Lin, M.A. Murphy, J.P. Diorio, J. Gass, B. Rabinow, X. Wang, Y. Zhang, Z. Yang, R.M. Hoffman. Paclitaxel nanosuspensions for targeted chemotherapy – nanosuspension preparation, characterization, and use. Pharm. Dev. Technol. (2013)

    Google Scholar 

  14. B. van Eerdenbrugh, L. Froyen, J.A. Martens, N. Blaton, P. Augustijns, M. Brewster, G. van den Mooter, Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freeze-dried solid nanoparticulate powders of the anti-HIV agent loviride prepared by media milling. Int. J. Pharm. 338, 198–206 (2007)

    Article  Google Scholar 

  15. B. van Eerdenbrugh, B. Stuyven, L. Froyen, J. van Humbeeck, J.A. Martens, P. Augustijns, G. van den Mooter, Downscaling drug nanosuspension production: processing aspects and physicochemical characterization. AAPS PharmSciTech 10, 44–53 (2009)

    Article  Google Scholar 

  16. G. Van’t Klooster, R. Verloes, L. Baert, F. Van Velsen, M.P. Bouche, K. Spittaels, J. Leempoels, P. Williams, G. Kraus, P. Wigerinck. Long-acting TMC278, a parenteral depot formulation delivering therapeutic NNRTI concentrations in preclinical and clinical settings, in Conference Retrovir Opportunistic Infect, 3–6 Feb 2015 (Abstract no. 134) (2008)

    Google Scholar 

  17. M.G. Fakes, B.J. Vakkalagadda, F. Qian, S. Desikan, R.B. Gandhi, C. Lai, A. Hsieh, M.K. Franchini, H. Toale, J. Brown, Enhancement of oral bioavailability of an HIV-attachment inhibitor by nanosizing and amorphous formulation approaches. Int. J. Pharm. 370, 167–174 (2009)

    Article  Google Scholar 

  18. S. Gahoi, G.K. Jain, R. Tripathi, S.K. Pandey, M. Anwar, M.H. Warsi, M. Singhal, R.K. Khar, F.J. Ahmad, Enhanced antimalarial activity of lumefantrine nanopowder prepared by wet-milling DYNO MILL technique. Colloids Surf. B Biointerfaces 95, 16–22 (2012)

    Article  Google Scholar 

  19. J. Chingunpitak, S. Puttipipatkhachorn, P. Chavalitshewinkoon-Petmitr, Y. Tozuka, K. Moribe, K. Yamamoto, Formation, physical stability and in vitro antimalarial activity of dihydroartemisinin nanosuspensions obtained by co-grinding method. Drug Dev. Ind. Pharm. 34, 314–322 (2008)

    Article  Google Scholar 

  20. K. Peters, S. Leitzke, J.E. Diederichs, K. Borner, H. Hahn, R.H. Müller, S. Ehlers, Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J. Antimicrob. Chemother. 45, 77–83 (2000)

    Article  Google Scholar 

  21. O. Kayser, A.F. Kiderlen, S. Bertels, K. Siems, Antileishmanial activities of aphidicolin and its semisynthetic derivatives. Antimicrob. Agents Chemother. 45, 288–292 (2001)

    Article  Google Scholar 

  22. O. Kayser, Nanosuspensions for the formulation of aphidicolin to improve drug targeting effects against leishmania infected macrophages. Int. J. Pharm. 196, 253–256 (2000)

    Article  Google Scholar 

  23. N. Schöler, K. Krause, O. Kayser, R.H. Müller, K. Borner, H. Hahn, O. Liesenfeld, Atovaquone nanosuspensions show excellent therapeutic effect in a new murine model of reactivated toxoplasmosis. Antimicrob. Agents Chemother. 45, 1771–1779 (2001)

    Article  Google Scholar 

  24. Y. Chen, J. Liu, X. Yang, X. Zhao, H. Xu, Oleanolic acid nanosuspensions: preparation, in-vitro characterization and enhanced hepatoprotective effect. J. Pharm. Pharmacol. 57, 259–264 (2005)

    Article  Google Scholar 

  25. S. Latha, P. Selvamani, C.S. Kumar, P. Sharavanan, G. Suganya, V.S. Beniwal, P.R. Rao, Formulation development and evaluation of metronidazole magnetic nanosuspension as a magnetic-targeted and polymeric-controlled drug delivery system. J. Magn. Magn. Mater. 321, 1580–1585 (2009)

    Article  Google Scholar 

  26. Z. Zhang, X. Zhang, W. Xue, Y. Yangyang, D. Xu, Y. Zhao, H. Lou, Effects of oridonin nanosuspension on cell proliferation and apoptosis of human prostatic carcinoma PC-3 cell line. Int. J. Nanomedicine 5, 735–742 (2010)

    Article  Google Scholar 

  27. H. Lou, X. Zhang, L. Gao, F. Feng, J. Wang, X. Wei, Z. Yu, D. Zhang, Q. Zhang, In vitro and in vivo antitumor activity of oridonin nanosuspension. Int. J. Pharm. 379, 181–186 (2009)

    Article  Google Scholar 

  28. H. Zhang, C.P. Hollis, Q. Zhang, T. Li, Preparation and antitumor study of camptothecin nanocrystals. Int. J. Pharm. 415, 293–300 (2011)

    Article  Google Scholar 

  29. P.C. Chiang, Y. Ran, K.J. Chou, Y. Cui, H. Wong, Investigation of utilization of nanosuspension formulation to enhance exposure of 1,3-dicyclohexylurea in rats: preparation for PK/PD study via subcutaneous route of nanosuspension drug delivery. Nanoscale Res. Lett. 6, 413 (2011)

    Article  Google Scholar 

  30. K. Mitri, R. Shegokar, S. Gohla, C. Anselmi, R.H. Muller, Lutein nanocrystals as antioxidant formulation for oral and dermal delivery. Int. J. Pharm. 420, 141–146 (2011)

    Article  Google Scholar 

  31. L. Al Shaal, R.H. Müller, R. Shegokar, smartCrystal combination technology–scale up from lab to pilot scale and long term stability. Pharmazie 65, 877–84 (2010)

    Google Scholar 

  32. J. Pardeike, R.H. Muller, Dermal and ocular safety of the new phospholipase A2 inhibitors PX-18 and PX-13 formulated as drug nanosuspension. J. Biomed. Nanotechnol. 5, 437–444 (2009)

    Article  Google Scholar 

  33. R. Shegokar, K.K. Singh, Surface modified nevirapine nanosuspensions for viral reservoir targeting: In vitro and in vivo evaluation. Int. J. Pharm. 421, 341–352 (2011)

    Article  Google Scholar 

  34. R.H. Müller, C. Jacobs, Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. Int. J. Pharm. 237, 151–161 (2002)

    Article  Google Scholar 

  35. H.M. Shubar, S. Lachenmaier, M.M. Heimesaat, U. Lohman, R. Mauludin, R.H. Mueller, R. Fitzner, K. Borner, O. Liesenfeld, SDS-coated atovaquone nanosuspensions show improved therapeutic efficacy against experimental acquired and reactivated toxoplasmosis by improving passage of gastrointestinal and blood-brain barriers. J. Drug Target. 19, 114–124 (2011)

    Article  Google Scholar 

  36. A. Lemke, A.F. Kiderlen, B. Petri, O. Kayser, Delivery of amphotericin B nanosuspensions to the brain and determination of activity against Balamuthia mandrillaris amebas. Nanomed. Nanotechnol. Biol. Med. 6, 597–603 (2010)

    Article  Google Scholar 

  37. R. Xiong, W. Lu, P. Yue, R. Xu, J. Li, T. Chen, P. Wang, Distribution of an intravenous injectable nimodipine nanosuspension in mice. J. Pharm. Pharmacol. 60, 1155–1159 (2008)

    Article  Google Scholar 

  38. L. AL Shaal, R. Shegokar, R.H. Müller. Layer-by-Layer (LBL) coated antioxidant nanocrystals for oral delivery. (American Association of Pharmaceutical Scientists (AAPS), Washington, DC, 2011), 23–27th Oct 2011, PO:T3152

    Google Scholar 

  39. E. Merisko-Liversidge, G.G. Liversidge, E.R. Cooper, Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 18, 113–120 (2003)

    Article  Google Scholar 

  40. R. Shegokar, M. Jansch, K.K. Singh, R.H. Muller, In vitro protein adsorption studies on nevirapine nanosuspensions for HIV/AIDS chemotherapy. Nanomed. Nanotechnol. Biol. Med. 7, 333–340 (2011)

    Article  Google Scholar 

  41. R. Shegokar, K.K. Singh, R.H. Müller, Nevirapine nanosuspension: comparative investigation of production methods. Nanotechnol. Dev 1(1), 16–22 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjita Shegokar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Shegokar, R. (2015). Wet Media Milling: An Effective Way to Solve Drug Solubility Issue. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-13188-7_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13188-7_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-13188-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics