Skip to main content

Composite Hybrid Membrane Materials for Artificial Organs

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

A special field of membrane separation technology consists in development of artificial organs. In the human body, with the exception of the heart and brain, all organs act as a membrane. Several solutions were investigated for various chronic diseases by replacing the function of the affected organ with a specific membrane process. This chapter describes the most important applications of polymeric and hybrid membranes for replacement or substitution of the kidney function, liver, pancreas, and lungs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lehn J-M (1995) Supramolecular chemistry. VCH, Weinheim

    Book  Google Scholar 

  2. Bechhold H (1907) Kolloid studien mit der Filtrations methode. Z Phys Chem 60:257

    Google Scholar 

  3. Loeb S, Sourirajan S (1963) Sea water demineralization by means of osmotic membrane in saline water conversion-II. vol 28. Advances in chemistry series. American Chemical Society, Washington DC, pp 117–132

    Google Scholar 

  4. Kesting RE (1972) Synthetic polymer membranes. McGraw Hill, New York

    Google Scholar 

  5. Mulder M (1984) Evaporation. Separation of ethanol-water and of isomeric of xylenes. PhD theses, Twente University

    Google Scholar 

  6. Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  7. Lee HC, Park JY, Yoon DY (2009) Advanced water treatment of high turbid source by hybrid module of ceramic microfiltration and activated carbon adsorption: effect of organic/inorganic materials. Korean J Chem Eng 26:697–701

    Article  Google Scholar 

  8. Seo GT, Suzuki Y, Ohgaki S (1996) Biological powdered activated carbon (BPAC) microfiltration for wastewater reclamation and reuse. Desalination 106:39–45

    Article  Google Scholar 

  9. Stewart MH, Wolfe RL, Means EG (1990) Assessment of the bacteriological activity associated with antigranulocytes activated carbon treatment of drinking-water. Appl Environ Microbiol 56:3822–3829

    Google Scholar 

  10. Kim J-S, Lee S-J, Yoon S-H, Lee C-H (1996) Competitive adsorption of trace organics on membranes and powdered activated carbon in powdered activated carbon-ultrafiltration system. J Water Supply Res Technol 34:223–229

    Article  Google Scholar 

  11. Voicu SI, Dobrica A, Sava S, Ivan A, Naftanaila L (2012) Cationic surfactants-controlled geometry and dimensions of polymeric membrane pores. J Optoelectron Adv Mater 14(11–12):923–928

    Google Scholar 

  12. Nechifor AC, Panait V, Naftanaila L, Batalu D, Voicu S (2013) Symmetrically polysulfone membranes obtained by solvent evaporation using carbon nanotubes as additives. Synthesis, characterization and applications. Digest J Nanomater Biostruct 8(2):875–884

    Google Scholar 

  13. Voicu SI, Nechifor AC, Serban B, Nechifor G, Miculescu M (2007) Formylated polysulphone membranes for cell immobilization. J Optoelectron Adv Mater 9(11):3423–3426

    Google Scholar 

  14. Voicu SI, Aldea F, Nechifor AC (2010) Polysulfone-carbon nanotubes composite membranes. Synthesis and characterization. Rev Chim 61(9):817–821

    Google Scholar 

  15. Voicu SI, Stanciu ND, Nechifor AC, Vaireanu DI, Nechifor G (2009) Synthesis and characterization of ionic conductive polysulfone composite membranes. Rom J Inf Sci Technol 12(3):410–422

    Google Scholar 

  16. Stamatialis DF, Papenburg BJ, Girones M, Saiful S, Bettahalli SNM, Schmitmeier S, Wessling M (2008) Medical applications of membranes: drug delivery, artificial organs and tissue engineering. J Membr Sci 308:1–34

    Article  Google Scholar 

  17. Kuethe DD, Augestein DC, Cresser JD, Wise DL (1992) Design of capsules that burst at predetermined times by dialysis. J Control Release 18:159–164

    Article  Google Scholar 

  18. Baker RW (1987) Controlled release of biologically active agents. Wiley, New York

    Google Scholar 

  19. Chien YW (1985) Polymer controlled drug delivery systems. Plenum, New York/London

    Google Scholar 

  20. Kesarwani A, Yadav AK, Singh S, Gautam H, Singh HN, Sharma A, Yadav C (2013) Theoretical aspects of drug delivery system transdermal. Bull Pharm Res 3(2):78–89

    Google Scholar 

  21. Kryscio DR, Peppas NA (2009) Mimicking biological drug delivery through controlled release feedback systems based on molecular imprinting. Bioeng Food Nat Prod 55(6):1311–1324

    Google Scholar 

  22. Norell MC, Andersson HS, Nicholls IA (1998) Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism. J Mol Recognit 1:98–102

    Article  Google Scholar 

  23. Izake EL (2007) Chiral discrimination and enantioselective analysis of drugs: an overview. J Pharm Sci 96(7):1659–1676

    Article  Google Scholar 

  24. Kawakami H (2008) Polymer membrane materials for artificial organs. J Artif Organs 11:177–181

    Article  Google Scholar 

  25. Kim B-S, Park I-K, Hoshiba T, Jiang H-L, Choi Y-J, Akaike T, Cho C-S (2011) Design of artificial extracellular matrices for tissue engineering. Prog Polym Sci 36:238–268

    Article  Google Scholar 

  26. Ritchie AC (2013) Chapter II.5.5, Artificial organs. In: Extracorporeal artificial organs. Elsevier, Oxford

    Google Scholar 

  27. Thongboonkerd V (2010) Proteomics in extracorporeal blood purification and peritoneal dialysis. J Proteomics 73:521–526

    Article  Google Scholar 

  28. Voiculescu IC, Petricu IC (1971) Anatomia si fiziologia omului. Editura Medicala, Bucuresti

    Google Scholar 

  29. Pantelias K, Grapsa E (2011) Chapter 4, Vascular access for hemodialysis. In: Penido MG (ed) Technical problems in patients on hemodialysis. Intech, Rijeka

    Google Scholar 

  30. Li L, Cheng C, Xiang T, Tang M, Zhao W, Sun S, Zhao C (2012) Modification of polyethersulfone hemodialysis membrane by blending citric acid grafted polyurethane and its anticoagulant activity. J Membr Sci 405–406:261–274

    Article  Google Scholar 

  31. Sasaki M (2006) Development of vitamin E-modified membrane polysulfone dialyzers. J Artif Organs 9:50–60

    Article  Google Scholar 

  32. Yamamoto K-I, Hiwatari M, Kohori F, Sakai K, Fukuda M, Hiyoshi T (2005) Membrane fouling and dialysate flow pattern in internal filtration-enhancing dialyzer year. J Artif Organs 8:198–205

    Article  Google Scholar 

  33. A clinical update on dialyzer membranes, state-of-the-art considerations for optimal care in hemodialysis. Available online at http://www.kidney.org/professionals/KLS/hddial_splash. Accessed 15 Aug 2014, 16.20

  34. Urbani A, Lupisella S, Sirolli V et al (2012) Proteomic analysis of protein adsorption capacity of different haemodialysis membranes. Biosyst Mol 8:1029–1039

    Article  Google Scholar 

  35. Krummel T, Hannedouche T (2013) Clinical potentials of adsorptive dialysis membranes. Blood Purif 35:1–4

    Article  Google Scholar 

  36. Thomas M, Moriyama K, Ledebo I (2011) AN 69: evolution of the world’s first high permeability membrane. In: Saito A, Kawanishi H, Yamashita AC, Mineshima M (eds) High performance membrane dialyzers, vol 173, Contributions to nephrology. Karger, Basel, pp 119–129

    Chapter  Google Scholar 

  37. Fujimori A (2013) Clinical comparison of super high-flux HD and online HDF. Blood Purif 35:81–84

    Article  Google Scholar 

  38. Irfan M, Idris A, Yusof NM, Farahah KMN, Akhmim H (2014) Surface modification and performance enhancement of nano-hybrid f-MWCNT/PVP90/PES hemodialysis membranes. J Membr Sci 467:73–84

    Article  Google Scholar 

  39. Nechifor G, Voicu SI, Nechifor AC, Garea S (2009) Nanostructured hybrid membrane polysulfone-carbon nanotubes for hemodialysis. Desalination 241:342–348

    Article  Google Scholar 

  40. Iwahashi H, Yuri K, Nose Y (2004) Development of the oxygenator: past, present, and future. J Artif Organs 7:111–120

    Article  Google Scholar 

  41. Cypel M, Keshavjee S (2014) Chapter 47, Artificial lung support in regenerative medicine applications in organ transplantation. Elsevier, Oxford

    Google Scholar 

  42. Onodera K, Sakata H, Yonekawa M, Kawamura A (2006) Artificial liver support at present and in the future. J Artif Organs 9:17–28

    Article  Google Scholar 

  43. Kiley JE, Pender JC, Welch HF, Welch CS (1958) Ammonia intoxication treated by hemodialysis. N Engl J Med 259:1156–1161

    Article  Google Scholar 

  44. Opolon P, Rapin JR, Huguet C, Granger A, Delorme ML, Bosch M, Sausse A (1976) Hepatic failure coma (HFC) treated by polyacrylonitrile membrane (PAN) hemodialysis (HD). Trans Am Soc Artif Intern Organs 22:701–710

    Google Scholar 

  45. Naruse K (2005) Artificial liver support: future aspects. J Artif Organs 8:71–76

    Article  Google Scholar 

  46. Kobayashi N, Okitsu T, Nakaji S, Tanaka N (2003) Hybrid bioartificial liver: establishing a reversibly immortalized human hepatocyte line and developing a bioartificial liver for practical use. J Artif Organs 6:236–244

    Article  Google Scholar 

  47. Bader A, Frühauf N, Tiedge M, Drinkgern M, De Bartolo L, Borlak JT, Steinhoff G, Haverich A (1999) Enhanced oxygen delivery reverses anaerobic metabolic states in prolonged sandwich rat hepatocyte culture. Exp Cell Res 246(1):221–232

    Article  Google Scholar 

  48. De Bartolo L, Morelli S, Lopez LC, Giorno L, Campana C, Salerno S, Rende M, Favia P, DeTomaso L, Gristina R, d’Agostino R, Drioli E (2005) Biotransformation and liver-specific functions of human hepatocytes in culture on RGD-immobilized plasma-processed membranes. Biomaterials 26(21):4432–4441

    Article  Google Scholar 

  49. Giorno L, De Bartolo L, Drioli E (2003) Polymer and biofunctional membranes. In: Bhattacharyya D, Butterfield DA (eds) New insights into the membrane science and technology, vol 8. Elsevier, Amsterdam, pp 187–217

    Google Scholar 

  50. Ikeda H, Kobayashi N, Tanaka Y, Nakaji Y, Yong Y, Okitsu T, Oshita M, Matsumoto S, Noguchi H, Narushima M, Tanaka K, Miki A, Rivas-Carrillo JD, Soto-Gutierrez A, Navarro-A’lvarez N, Tanaka K, Jun HS, Tanaka N, Yoon JW (2006) A newly developed bioartificial pancreas controls blood glucose successfully in totally pancreatectomized diabetic pigs. Tissue Eng 12(7):1799–1809

    Article  Google Scholar 

  51. Ricotti L, Assaf T, Dario P, Menciassi A (2013) Wearable and implantable pancreas substitutes. J Artif Organs 16:9–22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Ioan Voicu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Voicu, S.I., Sandru, M. (2016). Composite Hybrid Membrane Materials for Artificial Organs. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_20

Download citation

Publish with us

Policies and ethics