Skip to main content

Graphene-Bioceramic Composites

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

The Combination of graphene, graphene oxide or reduced graphene oxides with ceramic materials, especially hydroxyapatite, allows for the production of composites with better mechanical properties and often better biocompatibility and bioactivity than the individual components. This chapter reviews the work published in this rapidly growing field, and discusses the challenges yet to be solved to allow graphene/bioceramic composites to fully meet their potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  2. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4):507–514

    Article  Google Scholar 

  3. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  Google Scholar 

  4. Arndt A et al (2009) Electric carrier concentration in graphite: Dependence of electrical resistivity and magnetoresistance on defect concentration. Phys Rev B 80(19):195402

    Article  Google Scholar 

  5. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  6. Bonaccorso F et al (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217):41

    Article  Google Scholar 

  7. Lawal AT (2015) Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta 131:424–443

    Article  Google Scholar 

  8. Kong X-K, Chen C-L, Chen Q-W (2014) Doped graphene for metal-free catalysis. Chem Soc Rev 43(8):2841–2857

    Article  Google Scholar 

  9. Jihao L et al (2014) Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J MaterChem A 2(9):2934–2941

    Google Scholar 

  10. Yang Y, Asiri AM, Tang Z, Du D, Lin Y (2013) Graphene based materials for biomedical applications. Mater Today 16(10):365–373

    Article  Google Scholar 

  11. Han ZJ et al (2013) Carbon nanostructures for hard tissue engineering. RSC Adv 3(28):11058–11072

    Article  Google Scholar 

  12. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510

    Article  Google Scholar 

  13. Marino AA, Becker RO (1970) Piezoelectric effect and growth control in bone. Nature 228:473–474

    Article  Google Scholar 

  14. Nayak TR et al (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6):4670–4678

    Article  Google Scholar 

  15. Crowder SW et al (2013) Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 5(10):4171–4176

    Article  Google Scholar 

  16. Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25(1):15–34

    Article  Google Scholar 

  17. Liu H et al (2012) Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. J Phys Chem C 116(5):3334–3341

    Article  Google Scholar 

  18. Liu H et al (2014) Gelatin functionalized graphene oxide for mineralization of hydroxyapatite: biomimetic and in vitro evaluation. Nanoscale 6(10):5315–5322

    Article  Google Scholar 

  19. Fan Z et al (2013) Casein phosphopeptide-biofunctionalized graphene biocomposite for hydroxyapatite biomimetic mineralization. J Phys Chem C 117(20):10375–10382

    Article  Google Scholar 

  20. Tavafoghi M, Brodusch N, Gauvin C, Cerruti M (2015) Arginine and glutamic acid promote hydroxyapatite precipitation on graphene oxide (submitted)

    Google Scholar 

  21. Depan D, Pesacreta TC, Misra RDK (2014) The synergistic effect of a hybrid graphene oxide–chitosan system and biomimetic mineralization on osteoblast functions. Biomater Sci 2(2):264–274

    Article  Google Scholar 

  22. Wen T et al (2014) Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites. Dalton Trans 43(20):7464–7472

    Article  Google Scholar 

  23. Zhao J et al (2014) Nucleation and characterization of hydroxyapatite on thioglycolic acid-capped reduced graphene oxide/silver nanoparticles in simplified simulated body fluid. Appl Surf Sci 289:89–96

    Article  Google Scholar 

  24. Li Y et al (2014) Biomimetic graphene oxide–hydroxyapatite composites via in situ mineralization and hierarchical assembly. RSC Adv 4(48):25398

    Article  Google Scholar 

  25. Fan Z et al (2014) One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering. Carbon 66:407–416

    Article  Google Scholar 

  26. Baradaran S et al (2014) Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon 69:32–45

    Article  Google Scholar 

  27. Liu Y, Huang J, Li H (2013) Synthesis of hydroxyapatite–reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. J Mater Chem B 1(13):1826

    Article  Google Scholar 

  28. Li M et al (2013) In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J Mater Chem B 1(4):475–484

    Article  Google Scholar 

  29. Guittonneau F, Abdelouas A, Grambow B, Huclier S (2010) The effect of high power ultrasound on aqueous suspensions of graphite. Ultrasonics Chem 17:391–398

    Google Scholar 

  30. Liu Y, Dang Z, Wang Y, Huang J, Li H (2014) Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: inherited nanostructures and enhanced properties. Carbon 67:250–259

    Article  Google Scholar 

  31. Neelgund GM, Oki A, Luo Z (2013) In situ deposition of hydroxyapatite on graphene nanosheets. Mater Res Bull 48(2):175–179

    Article  Google Scholar 

  32. Zanin H et al (2013) Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive applications. J Mater Chem B 1(38):4947

    Article  Google Scholar 

  33. Pinto AM, Goncalves IC, Magalhães FD (2013) Graphene-based materials biocompatibility: a review. Colloids Surf B Biointerfaces 111:188–202

    Article  Google Scholar 

  34. Mehrali M et al (2014) Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. ACS Appl Mater Interfaces 6(6):3947–3962

    Article  Google Scholar 

  35. Kim S, Ku SH, Lim SY, Kim JH, Park CB (2011) Graphene-biomineral hybrid materials. Adv Mater 23(17):2009–2014

    Article  Google Scholar 

  36. Zhu J, Wong HM, Yeung KWK, Tjong SC (2011) Spark plasma sintered hydroxyapatite/graphite nanosheet and hydroxyapatite/multiwalled carbon nanotube composites: mechanical and in vitro cellular properties. Adv Eng Mater 13(4):336–341

    Article  Google Scholar 

  37. Zhang L et al (2013) A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon 61:105–115

    Article  Google Scholar 

  38. Klébert S et al (2015) Spark plasma sintering of graphene reinforced hydroxyapatite composites. Ceram Int 41:3647–3652

    Article  Google Scholar 

  39. Porwal H et al (2014) Processing and bioactivity of 45S5 Bioglass®-graphene nanoplatelets composites. J Mater Sci Mater Med 25(6):1403–1413

    Google Scholar 

  40. Zhao Y et al (2013) Microstructure and anisotropic mechanical properties of graphene nanoplatelet toughened biphasic calcium phosphate composite. Ceram Int 39(7):7627–7634

    Article  Google Scholar 

  41. Baradaran S et al (2015) Characterization of nickel-doped biphasic calcium phosphate/graphene nanoplatelet composites for biomedical application. Mater Sci Eng C 49:656–668

    Article  Google Scholar 

  42. Li M et al (2014) Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon 67:185–197

    Article  Google Scholar 

  43. Jankovic A et al (2015) Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid. J Alloys Compd 624:148–157

    Article  Google Scholar 

  44. Gao C, Liu T, Shuai C, Peng S (2014) Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance. Sci Rep 4:4712

    Google Scholar 

  45. Azhari A, Toyserkani E, Villain C (2015) Additive manufacturing of graphene-hydroxyapatite nanocomposite structures. Int J Appl Ceram Technol 12(1):8–17

    Article  Google Scholar 

  46. Xie X et al (2015) Graphene and hydroxyapatite self-assemble into homogenous, free standing nanocomposite hydrogels for bone tissue engineering. Nanoscale 7:7992–8002

    Google Scholar 

  47. Dalby MJ et al (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003

    Article  Google Scholar 

  48. Samiezadeh S, Avval PT, Fawaz Z, Bougherara H (2015) On optimization of a composite bone plate using the selective stress shielding approach. J Mech Behav Biomed Mater 42:138–153

    Article  Google Scholar 

  49. Lu J et al (2013) Self-supporting graphene hydrogel film as an experimental platform to evaluate the potential of graphene for bone regeneration. Adv Funct Mater 23(28):3494–3502

    Article  Google Scholar 

  50. Boskey AL (1998) Biomineralization: conflicts, challenges, and opportunities. J Cell Biochem 72(S30–31):83–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Cerruti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Xie, X., Cerruti, M. (2016). Graphene-Bioceramic Composites. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_19

Download citation

Publish with us

Policies and ethics