Skip to main content

Natural and Synthetic Polymers for Designing Composite Materials

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

Since the 1920s when Hermann Staudinger pioneered theories on “macromolecules,” covering both natural and synthetic polymers, this concept captured the imagination of chemists to design a wide range of molecular architectures of polymeric materials with fascinating and innovative applications. Polymers were first used in medicine as biomaterials in the 1950s for cornea replacement and as blood vessel replacement. Polymeric biomaterials offer a large diversity as matrix and inclusion materials in the development of biocompatible biostable, biodegradable, or bioresorbable polymeric biocomposite materials for tissue engineering and regenerative medicine applications. Natural polymers are considered as the first biodegradable biomaterials used in biomedical applications. Synthetic biostable polymers of the first generation of biomaterials were selected to provide mechanical support and minimize the host response of the related biomaterials. Biodegradable polymers have been utilized to develop biocompatible biomaterials with tuned degradability and certain structure–function relationship. The last generation of biomaterials for medical applications aims the design from biomimetic to bioinspired synthetic composite materials and systems with dynamic behavior and controlled properties, capable of inducing biological responses that mimic natural structures and processes, based on supramolecular self-assembled and smart polymer approach. Biocomposite polymer materials can be fabricated utilizing different techniques, the selection of the most appropriate being influenced by the desired application, the particularity of the type of filler (particles and fibers of different dimensions, laminae, or voids), and matrix (natural polymers, thermoplastic or thermosetting synthetic polymers), at different scale length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Bis-GMA:

2,2-Bis[p-(2′-hydroxy-3′-methacryloxypropoxy)phenylene]propane

CS:

Chondroitin sulfate

EBPADMA:

Ethoxylated bisphenol A dimethacrylate

ECM:

Extracellular matrix

GAGs:

Glycosaminoglycans

HA:

Hyaluronic acid

HAp:

Hydroxyapatite

HDPE:

High-density polyethylene

LCST:

Lower critical solution temperature

MMA:

Methyl methacrylate

PA:

Polyanhydride

PCL:

Poly(ε-caprolactone)

PDLLA:

Poly(d,l-lactic acid)

PE:

Polyethylenes

PEEK:

Poly(ether-ether-ketone)

PEG PEO:

Polyethylene glycol

PET:

Polyethylene terephthalate

PGA:

Poly(glycolic) acid

PHA:

Polyhydroxyalkanoates

PLA:

Poly(lactic) acid

PLGA:

Poly(lactic-co-glycolic) acid

PLLA:

Poly(l-lactic acid)

PMMA:

Poly(methyl methacrylate)

PNIPAM:

Poly(N-isopropylacrylamide)

PP:

Polypropylenes

PPF:

Poly(propylene fumarate)

PTFE:

Polytetrafluoroethylene

PTMC:

Poly(trimethylene carbonate)

PU:

Polyurethanes

TEGDMA:

Triethylene glycol dimethacrylate

UDMA:

1,6-Bis(methacryloxy-2-ethoxycarbonylamino)-2,4,4-trimethylhexane

UHMWPE:

Ultrahigh molecular weight polyethylene

References

  1. Peppas NA, Langer R (1994) New challenges in biomaterials. Science 263:1715–1720

    Article  Google Scholar 

  2. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017

    Article  Google Scholar 

  3. Holzapfel BM, Reichert JC, Schantz JT, Gbureck U, Rackwitz L, Nöth U, Jakob F, Rudert M, Groll J, Hutmacher DW (2013) How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliv Rev 65:581–603

    Article  Google Scholar 

  4. Studart AR (2012) Towards high-performance bioinspired composites. Adv Mater 24:5024–5044

    Article  Google Scholar 

  5. Hench LL (1998) Biomaterials: a forecast for the future. Biomaterials 19:1419–1423

    Article  Google Scholar 

  6. Narayan RJ (2010) The next generation of biomaterial development. Philos Trans R Soc A 368:1831–1837

    Article  Google Scholar 

  7. Chen P-Y, McKittrick J, Meyers MA (2012) Biological materials: functional adaptations and bioinspired designs. Prog Mater Sci 57:1492–1704

    Article  Google Scholar 

  8. Trask RS, Williams HR, Bond IP (2007) Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir Biomim 2:1–9

    Article  Google Scholar 

  9. Zhao Y, Sakai F, Su L, Liu Y, Wei K, Chen G, Jiang M (2013) Progressive macromolecular self-assembly: from biomimetic chemistry to bio-inspired materials. Adv Mater 25:5215–5256

    Article  Google Scholar 

  10. Aida T, Meijer EW, Stupp SI (2012) Functional supramolecular polymers. Science 335:813–817

    Article  Google Scholar 

  11. Fakirov S (2013) Nano-/microfibrillar polymer–polymer and single polymer composites: the converting instead of adding concept. Compos Sci Technol 89:211–225

    Article  Google Scholar 

  12. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials. Compos Sci Technol 61:1189–1224

    Article  Google Scholar 

  13. Pérez RA, Won J-E, Knowles JC, Kim H-W (2013) Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv Drug Deliv Rev 65:471–496

    Article  Google Scholar 

  14. Salerno A, Netti PA (2014) Introduction to biomedical foams. In: Biomedical foams for tissue engineering applications. Woodhead Publishing, Cambridge, pp 3–39

    Chapter  Google Scholar 

  15. Ghanbari H, Marashi SM, Rafiei Y, Chaloupka K, Seifalian AM (2011) Biomedical application of polyhedral oligomeric silsesquioxane nanoparticles. In: Applications of polyhedral oligomeric silsesquioxanes, vol 3, Advances in silicon science. Springer, Nederlands, pp 363–399

    Chapter  Google Scholar 

  16. Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453

    Article  Google Scholar 

  17. Wang R, Zheng S, George Zheng Y (2011) Interface of polymer matrix composites. In: Polymer matrix composites and technology. Woodhead Publishing, Oxford, pp 169–209

    Chapter  Google Scholar 

  18. Dry C (1996) Procedures developed for self-repair of polymeric matrix composite materials. Comp Struct 35:263–269

    Article  Google Scholar 

  19. Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211

    Article  Google Scholar 

  20. Gomes ME, Reis RL (2004) Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Int Mater Rev 49:261–285

    Article  Google Scholar 

  21. Williams DF (1992) Mechanisms of biodegradation of implantable polymers. Clin Mater 10:9–12

    Article  Google Scholar 

  22. Lyu S, Untereker D (2009) Degradability of polymers for implantable biomedical devices. Int J Mol Sci 10:4033–4065

    Article  Google Scholar 

  23. Yannas IV (2004) Classes of materials used in medicine: natural materials. In: Biomaterials science-an introduction to materials in medicine. Elsevier Academic Press, San Diego, pp 127–136

    Google Scholar 

  24. Halper J, Kjaer M (2014) Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. In: Progress in heritable soft connective tissue diseases. Springer, The Netherlands, pp 31–47

    Chapter  Google Scholar 

  25. Silva TH, Alves A, Ferreira BM, Oliveira JM, Reys LL, Ferreira RJF, Sousa RA, Silva SS, Mano JF, Reis RL (2012) Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Mater Rev 57:276–306

    Article  Google Scholar 

  26. Hu X, Cebe P, Weiss AS, Omenetto F, Kaplan DL (2012) Protein-based composite materials. Mater Today 15:208–215

    Article  Google Scholar 

  27. Hardy JG, Scheibel TR (2010) Composite materials based on silk proteins. Prog Polym Sci 35:1093–1115

    Article  Google Scholar 

  28. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457–470

    Article  Google Scholar 

  29. Numata K, Kaplan DL (2010) Silk-based delivery systems of bioactive molecules. Adv Drug Deliv Rev 62:1497–1508

    Article  Google Scholar 

  30. Harkin DG, George KA, Madden PW, Schwab IR, Hutmacher DW, Chirila TV (2011) Silk fibroin in ocular tissue reconstruction. Biomaterials 32:2445–2458

    Article  Google Scholar 

  31. Aravamudhan A, Ramos DM, Nada AA, Kumbar SG (2014) Natural polymers: polysaccharides and their derivatives for biomedical applications. In: Natural and synthetic biomedical polymers, 1st edn. San Diego, CA, pp 67–89

    Chapter  Google Scholar 

  32. Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

    Article  Google Scholar 

  33. Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598

    Article  Google Scholar 

  34. Williams SF, Martin DP, Horowitz DM, Peoples OP (1999) PHA applications: addressing the price performance issue: I. Tissue engineering. Int J Biol Macromol 25:111

    Article  Google Scholar 

  35. Boccaccini AR, Blaker JJ (2005) Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices 2:303–317

    Article  Google Scholar 

  36. Roy N, Bruchmann B, Lehn J-M (2015) DYNAMERS: dynamic polymers as self-healing materials. Chem Soc Rev 44:3786–3807

    Article  Google Scholar 

  37. Kenny SM, Buggy M (2003) Bone cements and fillers: a review. J Mater Sci Mater Med 14:923–938

    Article  Google Scholar 

  38. Cramer NB, Stansbury JW, Bowman CN (2011) Recent advances and developments in composite dental restorative materials. J Dent Res 90:402–416

    Article  Google Scholar 

  39. Milton Harris J (1992) Introduction to biotechnical and biomedical applications of poly(ethylene glycol). In: Poly(ethylene glycol) chemistry: biotechnical and biomedical applications. Springer, New York, pp 1–14

    Chapter  Google Scholar 

  40. Das R, Karumbaiah K (2015) Biodegradable polyester-based blends and composites: manufacturing, properties and applications. In: Biodegradable polyesters. Wiley, Weinheim, pp 321–340

    Google Scholar 

  41. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer: polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    Article  Google Scholar 

  42. Bendler JT (2000) Handbook of polycarbonate science and technology. Marcel Dekker, Basel, p 357

    Google Scholar 

  43. Chena Q, Liang S, Thouas GA (2013) Elastomeric biomaterials for tissue engineering. Prog Polym Sci 38:584–671

    Article  Google Scholar 

  44. Cardon LK, Ragaert KJ, Koster RP (2009) Design and fabrication of biocomposites. In: Biomedical Composites. Elsevier © Woodhead Publishing, Cambridge, UK, pp 25–43

    Google Scholar 

  45. Deb S (2010) Acrylic bone cements for joint replacement. In: Biomedical composites. Woodhead Publishing/CRC Press, Cambridge, UK, pp 210–233

    Google Scholar 

  46. Sakaguchi RL, Powers JM (2012) Restorative materials-composites and polymers. In: Craig’s restorative dental materials, 13th edn. Philadelphia, USA, pp 161–198

    Google Scholar 

  47. Salerno A, Netti P (2014) Introduction to biomedical foams. In: Biomedical foams for tissue engineering applications. Elsevier © Woodhead Publishing, Cambridge, UK, pp 1–37

    Google Scholar 

  48. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    Article  Google Scholar 

  49. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan C. Simionescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Simionescu, B.C., Ivanov, D. (2016). Natural and Synthetic Polymers for Designing Composite Materials. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_11

Download citation

Publish with us

Policies and ethics