Advertisement

Bayesian Cubic Spline in Computer Experiments

  • Yijie Dylan WangEmail author
  • C. F. Jeff Wu
Reference work entry

Abstract

Cubic splines are commonly used in numerical analysis. It has also become popular in the analysis of computer experiments, thanks to its adoption by the software JMP 8.0.2 2010. In this chapter, a Bayesian version of the cubic spline method is proposed, in which the random function that represents prior uncertainty about y is taken to be a specific stationary Gaussian process and y is the output of the computer experiment. A Markov chain Monte Carlo (MCMC) procedure is developed for updating the prior given the observed y values. Simulation examples and a real data application are given to show that the proposed Bayesian method performs better than the frequentist cubic spline method and the standard method based on the Gaussian correlation function.

Keywords

Gaussian process Markov chain Monte Carlo (MCMC) Kriging Nugget Uncertainty quantification 

References

  1. 1.
    Abrahamsen, P.: A Review of Gaussian Random Fields and Correlation Functions. Norsk Regnesentral/Norwegian Computing Center (1997)Google Scholar
  2. 2.
    Chen, Z., Gu, C., Wahba, G.: Comment on “linear smoothers and additive models”. Ann. Stat. 17(3), 515–521 (1989)CrossRefGoogle Scholar
  3. 3.
    Cressie, N.: Statistics for Spatial Data. Wiley, Chichester/New York (1992)zbMATHGoogle Scholar
  4. 4.
    Currin, C., Mitchell, T., Morris, M., Ylvisaker, D.: A Bayesian approach to the design and analysis of computer experiments. ORNL-6498 (1988)Google Scholar
  5. 5.
    Currin, C., Mitchell, T., Morris, M., Ylvisaker, D.: Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. J. Am. Stat. Assoc. 86(416), 953–963 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Diggle, P.J., Ribeiro, P.J.: Model-Based Geostatistics. Springer, New York (2007)zbMATHGoogle Scholar
  7. 7.
    DiMatteo, I., Genovese, C.R., Kass, R.E.: Bayesian curve-fitting with free-knot splines. Biometrika 88(4), 1055–1071 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fang, K.-T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Chapman and Hall/CRC, Boca Raton (2010)zbMATHGoogle Scholar
  9. 9.
    Geisser, S.: Predictive Inference: an Introduction, vol. 55. CRC Press, New York (1993)CrossRefzbMATHGoogle Scholar
  10. 10.
    Geyer, C.J.: Introduction to MCMC. Chapman & Hall, Boca Raton (2011)Google Scholar
  11. 11.
    Gill, J.: Bayesian Methods: A Social and Behavioral Sciences Approach. CRC Press, Boca Raton (2002)zbMATHGoogle Scholar
  12. 12.
    Gramacy, R.B., Apley, D.W.: Local Gaussian process approximation for large computer experiments. J. Comput. Graph. Stat. 24(2), 561–578 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gramacy, R.B., Lee, H.K.H.: Cases for the nugget in modeling computer experiments. Stat. Comput. 22(3), 713–722 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Joseph, V.R.: Limit kriging. Technometrics 48(4), 458–466 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kaufman, C.G., Bingham, D., Habib, S., Heitmann, K., Frieman, J.A.: Efficient emulators of computer experiments using compactly supported correlation functions, with an application to cosmology. Ann. Appl. Stat. 5(4), 2470–2492 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, vol. 14, pp. 1137–1145. Lawrence Erlbaum Associates Ltd (1995)Google Scholar
  18. 18.
    Laslett, G.M.: Kriging and splines: an empirical comparison of their predictive performance in some applications. J. Am. Stat. Assoc. 89(426), 391–400 (1994)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mardia, K.V., Marshall, R.J.: Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71(1), 135–146 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Matheron, G.: Principles of geostatistics. Econ. Geol. 58(8), 1246–1266 (1963)CrossRefGoogle Scholar
  21. 21.
    McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)CrossRefGoogle Scholar
  23. 23.
    Morris, M.D., Mitchell, T.J., Ylvisaker, D.: Bayesian design and analysis of computer experiments: use of derivatives in surface prediction. Technometrics 35(3), 243–255 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    O’Hagan, A., Kingman, J.F.C.: Curve fitting and optimal design for prediction. J. R. Stat. Soc. Ser. B (Methodolog.) 2, 1–42 (1978)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Patterson, H.D., Thompson, R.: Recovery of inter-block information when block sizes are unequal. Biometrika 58(3), 545–554 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Peng, C.-Y., Wu, C.F.J.: On the choice of nugget in kriging modeling for deterministic computer experiments. J. Comput. Graph. Stat. 23(1), 151–168 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, vol. 319. Citeseerx, New York (2004)CrossRefzbMATHGoogle Scholar
  28. 28.
    Sacks, J., Schiller, S.: Spatial designs. Stat. Decis. Theory Relat. Topics IV 2(32), 385–399 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sacks, J., Schiller, S., Welch, W.J.: Designs for computer experiments. Technometrics 31(1), 41–47 (1989)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer, New York (2003)CrossRefzbMATHGoogle Scholar
  32. 32.
    Wahba, G.: Spline Models for Observational Data, vol. 59. Society for Industrial and Applied Mathematics, Philadelphia (1990)CrossRefzbMATHGoogle Scholar
  33. 33.
    Wang, X.: Bayesian free-knot monotone cubic spline regression. J. Comput. Graph. Stat. 17(2), 518–527 (2008)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wecker, W.E., Ansley, C.F.: The signal extraction approach to nonlinear regression and spline smoothing. J. Am. Stat. Assoc. 78(381), 81–89 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ylvisaker, D.: Designs on random fields. Surv. Stat. Des. Linear Models 37(6), 593–607 (1975)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Ylvisaker, D.: Prediction and design. Ann. Stat. 52(17), 1–19 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Blizzard EntertainmentIrvineUSA
  2. 2.H. Milton Stewart School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations