Maximin Sliced Latin Hypercube Designs with Application to Cross Validating Prediction Error

  • Yan ChenEmail author
  • David M. Steinberg
  • Peter Qian
Reference work entry


This paper introduces an approach to construct a new type of design, called a maximin sliced Latin hypercube design. This design is a special type of Latin hypercube design that can be partitioned into smaller slices of Latin hypercube designs, where both the whole design and each slice are optimal under the maximin criterion. To construct these designs, a two-step construction method for generating sliced Latin hypercubes is proposed. Several examples are presented to evaluate the performance of the algorithm. An application of this type of optimal design in estimating prediction error by cross validation is also illustrated here.


Computer experiments Maximin design Enhanced stochastic evolutionary algorithm Design of experiments 


  1. 1.
    Ba, S., Brenneman, W.A., Myers, W.R.: Optimal sliced Latin hypercube designs. Technometrics. 57. 479–487 (2015)Google Scholar
  2. 2.
    Han, G., Santner, T.J., Notz, W.I., Bartel, D.L.: Prediction for computer experiments having quantitative and qualitative input variables. Technometrics 51, 278–288 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ishigami, T., Homma, T.: An importance quantification technique in uncertainty analysis for computer models, In: Proceedings of the First International Symposium on Uncertainty Modeling and Analysis (ISUMA’90), University of Maryland, pp. 398–403 (1990)Google Scholar
  4. 4.
    Jin, R., Chen, W., Sudjianto, A.: An efficient algorithm for constructing optimal design of computer experiments. J. Stat. Plann. Inference 134, 268–287 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance designs. J. Stat. Plan. Inference 26, 131–148 (1990)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lundy, M., Mees, A.: Convergence of an annealing algorithm. Math. Prog. 34, 111–124 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Morris, M.D., Mitchell, T.J., Ylvisaker, D.: Bayesian design and analysis of computer experiments: use of derivatives in surface prediction. Technometrics 35, 243–255 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Morris M.D., Mitchell, T.J.: Exploratory designs for computational experiments. J. Stat. Plan. Inference 43, 381–402 (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Qian, P.Z.G., Wu, C.F.J.: Sliced space-filling designs. Biometrika 96, 945–956 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Qian, P.Z.G., Wu, H., Wu, C.F.J.: Gaussian process models for computer experiments with qualitative and quantitative factors. Technometrics 50, 383–396 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Qian, P.Z.G.: Sliced Latin hypercube designs. J. Am. Stat. Assoc. 107, 393–399 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Szegö, G. P.: Towards Global Optimization II. North-Holland, New York (1978)Google Scholar
  15. 15.
    Welch, W.J., Buck, R.J., Sacks, J., Wynn, H.P., Mitchell, T.J., Morris, M.D.: Screening, predicting, and computer experiments. Technometrics 34, 15–25 (1992)CrossRefGoogle Scholar
  16. 16.
    Zhang, Q., Qian, P.Z.G.: Designs for crossvalidating approximation models. Biometrika 100, 997–1004 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2017

Authors and Affiliations

  1. 1.University of Wisconsin-MadisonMadisonUSA
  2. 2.Tel Aviv UniversityTel AvivIsrael

Personalised recommendations