Advertisement

Sensitivity Analysis of Spatial and/or Temporal Phenomena

  • Amandine MarrelEmail author
  • Nathalie Saint-Geours
  • Matthias De Lozzo
Reference work entry

Abstract

This section presents several sensitivity analysis methods to deal with spatial and/or temporal models. Focusing on the variance-based approach, solutions are proposed to perform global sensitivity analysis with functional inputs and outputs. Some of these solutions are illustrated on two industrial case studies: an environmental model for flood risk assessment and an atmospheric dispersion model for radionuclide release. These test cases are fully described at the beginning of the paper. Then a section is dedicated to spatiotemporal inputs and proposes several sensitivity analysis methods. The use of metamodels is also addressed. Pros and cons of the various methods are then discussed. In a subsequent section, solutions to deal with spatiotemporal outputs are proposed: aggregated, site, and block indices are described. The use of functional metamodels for sensitivity analysis purpose is also discussed.

Keywords

Spatiotemporal inputs Spatiotemporal outputs Metamodel Macro-parameter Joint metamodeling Dimension reduction Distance-based dissimilarity measure Trigger input Map labeling Aggregated indices Site indices Block indices Change of support 

References

  1. 1.
    Bayarri, M., Berger, J., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, J., Parthasarathy, R., Paulo, R., Sacks, J., Walsh, D.: Computer model validation with functional output. Ann. Stat. 35, 1874–1906 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bonin, O.: Sensitivity analysis and uncertainty analysis for vector geographical applications. In: 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Lisbon, 5–7 July 2006Google Scholar
  3. 3.
    Caers, J.: Modeling Uncertainty in the Earth Sciences. Wiley-Blackwell, Hoboken (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Caers, J., Park, K., Scheidt, C.: Modeling uncertainty of complex earth systems in metric space. In: Handbook of Geomathematics, pp. 865–889. Springer, Berlin/New York (2010)Google Scholar
  5. 5.
    Campbell, K., McKay, M.D., Williams, B.J.: Sensitivity analysis when model outputs are functions. Reliab. Eng. Syst. Saf. 91(10), 1468–1472 (2006)CrossRefGoogle Scholar
  6. 6.
    Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78(7), 808–817 (2000)Google Scholar
  7. 7.
    Crosetto, M., Tarantola, S.: Uncertainty and sensitivity analysis: tools for GIS-based model implementation. Int. J. Geogr. Inf. Sci. 15, 415–437 (2001)CrossRefGoogle Scholar
  8. 8.
    Da Veiga, S.: Global sensitivity analysis with dependence measures. J. Stat. Comput. Simul. 85(7), 1283–1305 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    De Lozzo, M., Marrel, A.: New improvements in the use of dependence measures for sensitivity analysis and screening. J. Stat. Comput. Simul. (2015, submitted) doi:https://hal.archives-ouvertes.fr/hal-01090475
  10. 10.
    Doury, A.: Pratiques françaises en matiére de prévision quantitative de la pollution atmosphérique potentielle liée aux activités nucléaires. In: Seminar on radioactive releases and their dispersion in the atmosphere following a hypothetical reactor accident, vol. I, pp. 403–448 (1980)Google Scholar
  11. 11.
    Erdlenbruch, K., Gilbert, E., Grelot, F., Lescouliers, C.: Une analyse coût-bénéfice spatialisée de la protection contre les inondations: application de la méthode des dommages évités à la basse vallée de l’Orb. Ingénieries Eau-Agriculture-Territoires 53, 3–20 (2008)Google Scholar
  12. 12.
    Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis. Springer Series in Statistics, Springer, New York (2006)zbMATHGoogle Scholar
  13. 13.
    Fisher, P.F.: Modelling soil map-unit inclusions by Monte Carlo simulation. Int. J. Geogr. Inf. Sci. 5(2), 193–208 (1991)CrossRefGoogle Scholar
  14. 14.
    Fort, J.C., Klein, T., Lagnoux, A., Laurent, B.: Estimation of the Sobol indices in a linear functional multidimensional model. J. Stat. Plan. Inference 143, 1590–1605 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Francos, A., Elorza, F.J., Bouraoui, F., Bidoglio, G., Galbiati, L.: Sensitivity analysis of distributed environmental simulation models: understanding the model behaviour in hydrological studies at the catchment scale. Reliab. Eng. Syst. Saf. 79(2), 205–218 (2003)CrossRefGoogle Scholar
  16. 16.
    Gamboa, F., Janon, A., Klein, T., Lagnoux, A., et al.: (2014) Sensitivity analysis for multidimensional and functional outputs. Electron. J. Stat. 8, 575–603MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gijbels, I., Prosdocimi, I., Claeskens, G.: Nonparametric estimation of mean and dispersion functions in extended generalized linear models. Test 19(3), 580–608 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ginsbourger, D., Rosspopoff, B., Pirot, G., Durrande, N., Renard, P.: Distance-based kriging relying on proxy simulations for inverse conditioning. Adv. Water Resour. 52, 275–291 (2013)CrossRefGoogle Scholar
  19. 19.
    Gretton, A., Bousquet, O., Smola, A., Schölkopf, B.: Measuring statistical dependence with Hilbert-Schmidt norms. In: Algorithmic Learning Theory, vol. 3734, pp. 63–77. Springer, Berlin/Heidelberg (2005)Google Scholar
  20. 20.
    Hengl, T.: Finding the right pixel size. Comput. Geosci. 32, 1283–1298 (2006)CrossRefGoogle Scholar
  21. 21.
    Heuvelink, G.B.M., Brus, D.J., Reinds, G.: Accounting for spatial sampling effects in regional uncertainty propagation analysis. In: Proceedings of the Ninth International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Leicester, pp. 85–88, 20–23 July 2010Google Scholar
  22. 22.
    Heuvelink, G.B.M., Burgers SLGE, Tiktak, A., Den Berg, F.V.: Uncertainty and stochastic sensitivity analysis of the GeoPEARL pesticide leaching model. Geoderma 155(3–4), 186–192 (2010)CrossRefGoogle Scholar
  23. 23.
    Iooss, B.: Treatment of spatially dependent input variables in sensitivity analysis of model output methods. Technical report, European project PAMINA (Performance assessment methodologies in application to guide the development of the safety case) (2008)Google Scholar
  24. 24.
    Iooss, B., Ribatet, M.: Global sensitivity analysis of computer models with functional inputs. Reliab. Eng. Syst. Saf. 94, 1194–1204 (2009)CrossRefGoogle Scholar
  25. 25.
    Jacques, J., Lavergne, C., Devictor, N.: Sensitivity analysis in presence of model uncertainty and correlated inputs. Reliab. Eng. Syst. Saf. 91(10–11), 1126–1134 (2006)CrossRefGoogle Scholar
  26. 26.
    Lamboni, M., Monod, H., Makowski, D.: Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliab. Eng. Syst. Saf. 96(4), 450–459 (2011)CrossRefGoogle Scholar
  27. 27.
    Lilburne, L., Tarantola, S.: Sensitivity analysis of spatial models. Int. J. Geogr. Inf. Sci. 23(2), 151–168 (2009)CrossRefGoogle Scholar
  28. 28.
    Marrel, A., Iooss, B., Jullien, M., Laurent, B., Volkova, E.: Global sensitivity analysis for models with spatially dependent outputs. Environmetrics 22(3), 383–397 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Marrel, A., Iooss, B., Da Veiga, S., Ribatet, M.: Global sensitivity analysis of stochastic computer models with joint metamodels. Stat. Comput. 22(3), 833–847 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Marrel, A., Perot, N., Mottet, C.: Development of a surrogate model and sensitivity analysis for spatio-temporal numerical simulators. Stoch. Environ. Res. Risk Assess. 29(3), 959–974 (2015)CrossRefGoogle Scholar
  31. 31.
    McCullagh, P., Nelder, J.A., McCullagh, P.: Generalized Linear Models, vol. 2. Chapman and Hall, London (1989)CrossRefzbMATHGoogle Scholar
  32. 32.
    Monfort, M., Patryl, L., Armand, P.: Presentation of the ceres platform used to evaluate the consequences of the emissions of radionuclides in the environment. HARMO 13, 1–4 (2010)Google Scholar
  33. 33.
    Morris, M.D.: Gaussian surrogates for computer models with time-varying inputs and outputs. Technometrics 54(1), 42–50 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Romary, T.: Heterogeneous media stochastic model inversion. PhD thesis, Université Pierre et Marie Curie – Paris VI (2008)Google Scholar
  35. 35.
    Ruffo, P., Bazzana, L., Consonni, A., Corradi, A., Saltelli, A., Tarantola, S.: Hydrocarbon exploration risk evaluation through uncertainty and sensitivity analyses techniques. Reliab. Eng. Syst. Saf. 91(10–11), 1155–1162 (2006)CrossRefGoogle Scholar
  36. 36.
    Saint-Geours, N.: Sensitivity analysis of spatial models: application to cost-benefit analysis of flood risk management plans. PhD thesis, Université Montpellier 2, http://tel.archives-ouvertes.fr/tel-00761032 (2012)
  37. 37.
    Saint-Geours, N., Lavergne, C., Bailly, J.S., Grelot, F.: Change of support in variance-based spatial sensitivity analysis. Math. Geosci. 44(8), 945–958 (2012)CrossRefzbMATHGoogle Scholar
  38. 38.
    Saint-Geours, N., Bailly, J.S., Grelot, F., Lavergne, C.: Multi-scale spatial sensitivity analysis of a flood damage assessment model. Environ. Model. Softw. 60, 153–166 (2014). http://dx.doi.org/10.1016/j.envsoft.2014.06.012 CrossRefzbMATHGoogle Scholar
  39. 39.
    Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index. Comput. Phys. Commun. 181(2), 259–270 (2010)Google Scholar
  40. 40.
    Scheidt, C., Caers, J.: Representing spatial uncertainty using distances and kernels. Math. Geosci. 41(4), 397–419 (2009)CrossRefzbMATHGoogle Scholar
  41. 41.
    Shi, J.Q., Wang, B., Murray-Smith, R., Titterington, D.M.: Gaussian process functional regression modeling for batch data. Biometrics 63(3), 714–723 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    SMVOL: Programme d’actions de prévention des inondations sur les bassins de l’Orb et du Libron (34) pour les années 2011–2015. Note de présentation, Syndicat Mixte des Vallées de l’Orb et du Libron (2011)Google Scholar
  43. 43.
    Smyth, G.K.: Generalized linear models with varying dispersion. J. R. Stat. Soc. Ser. B (Methodol.) 51, 47–60 (1989)MathSciNetGoogle Scholar
  44. 44.
    Suzuki, S., Caers, J.: A distance-based prior model parameterization for constraining solutions of spatial inverse problems. Math. Geosci. 40(4), 445–469 (2008)CrossRefzbMATHGoogle Scholar
  45. 45.
    Suzuki, S., Caumon, G., Caers, J.: Dynamic data integration for structural modeling: model screening approach using a distance-based model parameterization. Comput. Geosci. 12(1), 105–119 (2008)CrossRefzbMATHGoogle Scholar
  46. 46.
    Volkova, E., Iooss, B., Van Dorpe, F.: Global sensitivity analysis for a numerical model of radionuclide migration from the RRC Kurchatov Institute radwaste disposal site. Stoch. Environ. Res. Risk A 22(1), 17–31 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Wechsler, S.: Uncertainties associated with digital elevation models for hydrologic applications: a review. Hydrol. Earth Syst. Sci. 11(4), 1481–1500 (2007)CrossRefGoogle Scholar
  48. 48.
    Zabalza, I., Dejean, J.P., Collombier, D.: Prediction and density estimation of a horizontal well productivity index using generalized linear models. In: 6th European Conference on the Mathematics of Oil Recovery. Peebles, Scotland (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Amandine Marrel
    • 1
    Email author
  • Nathalie Saint-Geours
    • 2
  • Matthias De Lozzo
    • 1
  1. 1.CEA, DEN, DERSaint-Paul-lez-DuranceFrance
  2. 2.ITK - Predict & DecideClapiersFrance

Personalised recommendations