Design of Experiments for Screening

  • David C. WoodsEmail author
  • Susan M. Lewis
Reference work entry


The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs, and systematic fractional replicate designs. Generic issues of aliasing, bias, and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are addressed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modeling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared.


Computer experiments fractional factorial designs Gaussian process models group screening space-filling designs supersaturated designs variable selection 



D. C. Woods was supported by a fellowship from the UK Engineering and Physical Sciences Research Council (EP/J018317/1). The authors thank Dr Antony Overstall (University of Glasgow, UK) and Dr Maria Adamou (University of Southampton, UK) for providing code for the RDVS and SGPVS methods, respectively.


  1. 1.
    Abraham, B., Chipman, H., Vijayan, K.: Some risks in the construction and analysis of supersaturated designs. Technometrics, 41, 135–141 (1999).CrossRefGoogle Scholar
  2. 2.
    Andres, T.H., Hajas, W.C.: Using iterated fractional factorial design to screen parameters in sensitivity analysis of a probabilistic risk assessment model. In: Proceedings of Joint International Conference on Mathematical Methods and Supercomputing in Nuclear Applications, Karlsruhe, pp. 328–340 (1993)Google Scholar
  3. 3.
    Ankenman, B.E., Cheng, R.C.H., Lewis, S.M.: Screening for dispersion effects by sequential bifurcation. ACM Trans. Model. Comput. Simul. 25 pages 2:1 - 2:27 (2014)Google Scholar
  4. 4.
    Atkinson, A.C., Donev, A.N., Tobias, R.D.: Optimum Experimental Designs, with SAS, 2nd edn. Oxford University Press, Oxford (2007)zbMATHGoogle Scholar
  5. 5.
    Ba, S.: SLHD: Maximin-Distance (Sliced) Latin Hypercube Designs. (2015). R package version 2.1-1
  6. 6.
    Ba, S., Brenneman, W.A., Myers, W.R.: Optimal sliced Latin hypercube designs. Technometrics 57, 479–487 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ba, S., Joseph, R.: MaxPro: Maximum Projection Designs. (2015). R package version 3.1-2
  8. 8.
    Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bettonvil, B.: Factor screening by sequential bifurcation. Commun. Stat. Simul. Comput. 24, 165–185 (1995)zbMATHCrossRefGoogle Scholar
  10. 10.
    Bettonvil, B., Kleijnen, J.P.C.: Searching for important factors in simulation models with many factors: sequential bifurcation. Eur. J. Oper. Res. 96, 180–194 (1996)zbMATHCrossRefGoogle Scholar
  11. 11.
    Booth, K.H.V., Cox, D.R.: Some systematic supersaturated designs. Technometrics 4, 489–495 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Boukouvalas, A., Gosling, J.P., Maruri-Aguilar, H.: An efficient screening method for computer experiments. Technometrics 56, 422–431 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bowman, V.E., Woods, D.C.: Weighted space-filling designs. J. Simul. 7, 249–263 (2013)CrossRefGoogle Scholar
  14. 14.
    Box, G.E.P.: Discussion of the papers of Satterthwaite and Budne. Technometrics 1, 174–180 (1959)CrossRefGoogle Scholar
  15. 15.
    Box, G.E.P., Hunter, J.S., Hunter, W.G.: Statistics for Experimenters: Design, Discovery and Innovation, 2nd edn. Wiley, Hoboken (2005)zbMATHGoogle Scholar
  16. 16.
    Box, G.E.P., Meyer, R.D.: An analysis for unreplicated fractional factorials. Technometrics 28, 11–18 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Box, G.E.P., Wilson, K.B.: On the experimental attainment of optimum conditions. J. R. Stat. Soc. B 13, 1–45 (1951)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Brenneman, W.A.: Comment: simulation used to solve tough practical problems. Technometrics 56, 19–20 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bulutoglu, D.A., Cheng, C.S.: Construction of E(s 2)-optimal supersaturated designs. Ann. Stat. 32, 1162–1678 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference, 2nd edn. Springer, New York (2002)zbMATHGoogle Scholar
  21. 21.
    Butler, N.A.: Supersaturated Latin hypercube designs. Commun. Stat. Theory Methods 34, 417–428 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Campolongo, F., Cariboni, J., Saltelli, A.: An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 22, 1509–1518 (2007)CrossRefGoogle Scholar
  23. 23.
    Campolongo, F., Kleijnen, J.P.C., Andres, T.H.: Screening methods. In: Saltelli, A., Chan, K., Scott, E.M. (eds.) Sensitivity Analysis, chap. 4 Wiley, Chichester (2000)Google Scholar
  24. 24.
    Candes, E.O., Tao, T.: The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35, 2313–2351 (2007)Google Scholar
  25. 25.
    Cheng, C.S., Tang, B.: A general theory of minimum aberration and its applications. Ann. Stat. 33, 944–958 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Chipman, H.A., Hamada, M.S., Wu, C.F.J.: A Bayesian variable-selection approach for analyzing designed experiments with complex aliasing. Technometrics 39, 372–381 (1997)zbMATHCrossRefGoogle Scholar
  27. 27.
    Claeys-Bruno, M., Dobrijevic, M., Cela, R., Phan-Tan-Luu, R., Sergent, M.: Supersaturated designs for computer experiments: comparison of construction methods and new methods of treatment adopted to the high dimensional problem. Chemom. Intell. Lab. Syst. 105, 137–146 (2011)CrossRefGoogle Scholar
  28. 28.
    Cotter, S.C.: A screening design for factorial experiments with interactions. Biometrika 66, 317–320 (1979)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Damblin, G., Couplet, M., Iooss, B.: Numerical studies of space-filling designs: optimization of Latin Hypercube Samples and subprojection properties. J. Simul. 7, 276–289 (2013)CrossRefGoogle Scholar
  30. 30.
    Daniel, C.: Use of half-normal plots in interpreting factorial two-level experiments. Technometrics 1, 311–341 (1959)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Dean, A.M., Lewis, S.M.: Comparison of group screening strategies for factorial experiments. Comput. Stat. Data Anal. 39, 287–297 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Dean, A.M., Lewis, S.M. (eds.): Screening: Methods for Experimentation in Industry, Drug Discovery and Genetics. Springer, New York (2006)zbMATHGoogle Scholar
  33. 33.
    Dorfman, R.: The detection of defective members of large populations. Ann. Math. Stat. 14, 436–440 (1943)CrossRefGoogle Scholar
  34. 34.
    Draguljić, D., Woods, D.C., Dean, A.M., Lewis, S.M., Vine, A.E.: Screening strategies in the presence of interactions (with discussion). Technometrics 56, 1–28 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    DuMouchel, W., Jones, B.A.: A simple Bayesian modification of D-optimal designs to reduce dependence on an assumed model. Technometrics 36, 37–47 (1994)zbMATHGoogle Scholar
  36. 36.
    Dupuy, D., Corre, B., Claeys-Bruno, M., Sergent, M.: Comparison of different screening methods. Case Stud. Bus. Ind. Gov. Stat. 5, 115–125 (2014)Google Scholar
  37. 37.
    Durrande, N., Ginsbourger, D., Roustant, O.: Additive covariance kernels for high-dimensional Gaussian process modeling. Annales de la Faculté de Sciences de Toulouse 21, 481–499 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Fang, K.T., Lin, D.K.J., Winker, P., Zhang, Y.: Uniform design: theory and application. Technometrics 42, 237–248 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Finney, D.J.: The fractional replication of factorial arrangements. Ann. Eugen. 12, 291–301 (1943)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Franco, J., Dupuy, D., Roustant, O., Damblin, G., Iooss, B.: DiceDesign: Design of Computer Experiments. (2014). R package version 1.6
  41. 41.
    George, E.I., McCulloch, R.E.: Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 88, 881–889 (1993)CrossRefGoogle Scholar
  42. 42.
    Gilmour, S.G.: Factor screening via supersaturated designs. In: Dean, A.M., Lewis, S.M. (eds.) Screening: Methods for Experimentation in Industry, Drug Discovery and Genetics, pp. 169–190. Springer, New York (2006)CrossRefGoogle Scholar
  43. 43.
    Gramacy, R.B., Lee, H.K.H.: Bayesian treed Gaussian process models with an application to computer modeling. J. Am. Stat. Assoc. 103, 1119–1130 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Hall, M.J.: Combinatorial Theory. Blaisdell, Waltham (1967)zbMATHGoogle Scholar
  45. 45.
    Hamada, M., Balakrishnan, N.: Analyzing unreplicated factorial experiments: a review with some new proposals. Statistica Sinica 8, 1–41 (1998)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Hamada, M., Wu, C.F.J.: Analysis of designed experiments with complex aliasing. J. Qual. Technol. 24, 130–137 (1992)Google Scholar
  47. 47.
    Iman, R.L., Conover, W.J.: A distribution-free approach to inducing rank correlation among input variables. Commun. Stat. Simul. Comput. 11, 311–334 (1982)zbMATHCrossRefGoogle Scholar
  48. 48.
    James, G.M., Radchenko, P., Lv, J.: DASSO: connections between the Dantzig selector and lasso. J. R. Stat. Soc. B 71, 127–142 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Jin, R., Chen, W., Sudjianto, A.: An efficient algorithm for constructing optimal design of computer experiments. J. Stat. Plan. Inference 134, 268–287 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Johnson, M., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance design. J. Stat. Plan. Inference 26, 131–148 (1990)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Jones, B.A., Lin, D.K.J., Nachtsheim, C.J.: Bayesian D-optimal supersaturated designs. J. Stat. Plan. Inference 138, 86–92 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Jones, B.A., Majumdar, D.: Optimal supersaturated designs. J. Am. Stat. Assoc. 109, 1592–1600 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Jones, B.A., Nachtsheim, C.J.: A class of three-level designs for definitive screening in the presence of second-order effects. J. Qual. Technol. 43, 1–15 (2011)Google Scholar
  54. 54.
    Joseph, R., Gul, E., Ba, S.: Maximum projection designs for computer experiments. Biometrika 102, 371–380 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Kleijnen, J.P.C.: Design and Analysis of Simulation Experiments, 2nd edn. Springer, New York (2015)zbMATHCrossRefGoogle Scholar
  56. 56.
    Lenth, R.V.: Quick and easy analysis of unreplicated factorials. Technometrics 31, 469–473 (1989)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Lewis, S.M., Dean, A.M.: Detection of interactions in experiments on large numbers of factors (with discussion). J. R. Stat. Soc. B 63, 633–672 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Li, W.: Screening designs for model selection. In: Dean, A.M., Lewis, S.M. (eds.) Screening: Methods for Experimentation in Industry, Drug Discovery and Genetics, pp. 207–234. Springer, New York (2006)CrossRefGoogle Scholar
  59. 59.
    Li, W.W., Wu, C.F.J.: Columnwise-pairwise algorithms with applications to the construction of supersaturated designs. Technometrics 39, 171–179 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Li, X., Zhao, T., Wong, L., Yuan, X., Liu, H.: flare: Family of Lasso Regression. (2014). R package version 1.5.0
  61. 61.
    Lin, D.K.J.: A new class of supersaturated designs. Technometrics 35, 28–31 (1993)CrossRefGoogle Scholar
  62. 62.
    Lin, D.K.J.: Generating systematic supersaturated designs. Technometrics 37, 213–225 (1995)zbMATHCrossRefGoogle Scholar
  63. 63.
    Linkletter, C., Bingham, D., Hengartner, N., Hidgon, D., Ye, K.Q.: Variable selection for Gaussian process models in computer experiments. Technometrics 48, 478–490 (2006)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Liu, Y., Dean, A.M.: K-circulant supersaturated designs. Technometrics 46, 32–43 (2004)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Liu, M., Fang, K.T.: A case study in the application of supersaturated designs to computer experiments. Acta Mathematica Scientia 26B, 595–602 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Loeppky, J.L., Sacks, J., Welch, W.J.: Choosing the sample size of a computer experiment: a practical guide. Technometrics 51, 366–376 (2009)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Marley, C.J., Woods, D.C.: A comparison of design and model selection methods for supersaturated experiments. Comput. Stat. Data Anal. 54, 3158–3167 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Marrel, A., Iooss, B., Van Dorpe, F., Volkova, E.: An efficient methodology for modeling complex computer codes with Gaussian processes. Comput. Stat. Data Anal. 52, 4731–4744 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Mauro, C.A., Smith, D.E.: The performance of two-stage group screening in factor screening experiments. Technometrics 24, 325–330 (1982)CrossRefGoogle Scholar
  70. 70.
    McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)MathSciNetzbMATHGoogle Scholar
  71. 71.
    Meyer, R.K., Nachtsheim, C.J.: The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics 37, 60–69 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Miller, A.: Subset Selection in Regression, 2nd edn. Chapman & Hall/CRC, Boca Raton (2002)zbMATHCrossRefGoogle Scholar
  73. 73.
    Moon, H., Dean, A.M., Santner, T.J.: Two-stage sensitivity-based group screening in computer experiments. Technometrics 54, 376–387 (2012)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33, 161–174 (1991)CrossRefGoogle Scholar
  75. 75.
    Morris, M.D.: An overview of group factor screening. In: Dean, A.M., Lewis, S.M. (eds.) Screening: Methods for Experimentation in Industry, Drug Discovery and Genetics, pp. 191–206. Springer, New York (2006)CrossRefGoogle Scholar
  76. 76.
    Morris, M.D., Mitchell, T.J.: Exploratory designs for computer experiments. J. Stat. Plan. Inference 43, 381–402 (1995)zbMATHCrossRefGoogle Scholar
  77. 77.
    Nguyen, N.K.: An algorithmic approach to constructing supersaturated designs. Technometrics 38, 69–73 (1996)zbMATHCrossRefGoogle Scholar
  78. 78.
    Nguyen, N.K., Cheng, C.S.: New E(s 2)-optimal supersaturated designs constructed from incomplete block designs. Technometrics 50, 26–31 (2008)MathSciNetCrossRefGoogle Scholar
  79. 79.
    Nguyen, N.K., Stylianou, S.: Constructing definitive screening designs using cyclic generators. J. Stat. Theory Pract. 7, 713–724 (2012)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Overstall, A.M., Woods, D.C.: Multivariate emulation of computer simulators: model selection and diagnostics with application to a humanitarian relief model (2016). J. Roy. Statist. Soc. C, in press (DOI:10.1111/rssc.12141).
  81. 81.
    Owen, A.B.: Orthogonal arrays for computer experiments, integration and visualisation. Statistica Sinica 2, 439–452 (1992)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Phoa, F.K.H., Lin, D.K.J.: A systematic approach for the construction of definitive screening designs. Statistica Sinica 25, 853–861 (2015)MathSciNetzbMATHGoogle Scholar
  83. 83.
    Phoa, F.K.H., Pan, Y.H., Xu, H.: Analysis of supersaturated designs via the Dantzig selector. J. Stat. Plan. Inference 139, 2362–2372 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Plackett, R.L., Burman, J.P.: The design of optimum multifactorial experiments. Biometrika 33, 305–325 (1946)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Pronzato, L., Müller, W.G.: Design of computer experiments: space filling and beyond. Stat. Comput. 22, 681–701 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Pujol, G.: Simplex-based screening designs for estimating meta-models. Reliab. Eng. Syst. Saf. 94, 1156–1160 (2009)CrossRefGoogle Scholar
  87. 87.
    Pujol, G., Iooss, B., Janon, A.: Sensitivity: Sensitivity Analysis. (2015). R package version 1.11
  88. 88.
    Qian, P.Z.G.: Sliced Latin hypercube designs. J. Am. Stat. Assoc. 107, 393–399 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Qian, P.Z.G., Wu, C.F.J.: Sliced space-filling designs. Biometrika 96, 945–956 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Qian, P.Z.G., Wu, H., Wu, C.F.J.: Gaussian process models for computer experiments with qualitative and quantitative factors. Technometrics 50, 383–396 (2008)MathSciNetCrossRefGoogle Scholar
  91. 91.
    Qu, X., Wu, C.F.J.: One-factor-at-a-time designs of resolution V. J. Stat. Plan. Inference 131, 407–416 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Rao, C.R.: Factorial experiments derivable from combinatorial arrangements of arrays. J. R. Stat. Soc. Suppl. 9, 128–139 (1947)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. MIT, Cambridge (2006)zbMATHGoogle Scholar
  94. 94.
    Ryan, K.J., Bulutoglu, D.A.: E(s 2)-optimal supersaturated designs with good minimax properties. J. Stat. Plan. Inference 137, 2250–2262 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Saltelli, A., Andres, T.H., Homma, T.: Sensitivity analysis of model output. An investigation of new techniques. Comput. Stat. Data Anal. 15, 211–238 (1993)zbMATHCrossRefGoogle Scholar
  96. 96.
    Saltelli, A., Andres, T.H., Homma, T.: Sensitivity analysis of model output. Performance of the iterated fractional factorial design method. Comput. Stat. Data Anal. 20, 387–407 (1995)zbMATHCrossRefGoogle Scholar
  97. 97.
    Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer, New York (2003)zbMATHCrossRefGoogle Scholar
  98. 98.
    Satterthwaite, F.: Random balance experimentation. Technometrics 1, 111–137 (1959)MathSciNetCrossRefGoogle Scholar
  99. 99.
    Scinto, P.R., Wilkinson, R.G., Wang, Z., Rose, A.D.: Comment: need for guidelines on appropriate screening designs for practitioners. Technometrics 56, 23–24 (2014)MathSciNetCrossRefGoogle Scholar
  100. 100.
    Scott-Drechsel, D., Su, Z., Hunter, K., Li, M., Shandas, R., Tan, W.: A new flow co-culture system for studying mechanobiology effects of pulse flow waves. Cytotechnology 64, 649–666 (2012)CrossRefGoogle Scholar
  101. 101.
    Sun, D.X., Li, W., Ye, K.Q.: An algorithm for sequentially constructing non-isomorphic orthogonal designs and its applications. Technical report SUNYSB-AMS-02-13, Department of Applied Mathematics, SUNY at Stony Brook, New York (2002)Google Scholar
  102. 102.
    Tang, B.: Orthogonal array-based Latin hypercubes. J. Am. Stat. Assoc. 88, 1392–1397 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Tang, B.: Selecting Latin hypercubes using correlation criteria. Statistica Sinica 8, 965–977 (1998)MathSciNetzbMATHGoogle Scholar
  104. 104.
    Vine, A.E., Lewis, S.M., Dean, A.M.: Two-stage group screening in the presence of noise factors and unequal probabilities of active effects. Statistica Sinica 15, 871–888 (2005)MathSciNetzbMATHGoogle Scholar
  105. 105.
    Voss, D.T., Wang, W.: Analysis of orthogonal saturated designs. In: Dean, A.M., Lewis, S.M. (eds.) Screening: Methods for Experimentation in Industry, Drug Discovery and Genetics, pp. 268–286. Springer, New York (2006)CrossRefGoogle Scholar
  106. 106.
    Wan, H.B.E., Ankenman, B.E., Nelson, B.L.: Controlled sequential bifurcation: a new factor-screening method for discrete-event simulation. Oper. Res. 54, 743–755 (2006)CrossRefGoogle Scholar
  107. 107.
    Wan, H., Ankenman, B.E., Nelson, B.L.: Improving the efficiency and efficacy of controlled sequential bifurcation for simulation factor screening. INFORMS J. Comput. 3, 482–492 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Watson, G.S.: A study of the group screening method. Technometrics 3, 371–388 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    Welch, W.J., Buck, R.J., Sacks, J., Wynn, H.P., Mitchell, T.J., Morris, M.D.: Screening, predicting and computer experiments. Technometrics 34, 15–25 (1992)CrossRefGoogle Scholar
  110. 110.
    Wolters, M.A., Bingham, D.R.: Simulated annealing model search for subset selection in screening experiments. Technometrics 53, 225–237 (2011)MathSciNetCrossRefGoogle Scholar
  111. 111.
    Wu, C.F.J.: Construction of supersaturated designs through partially aliased interactions. Biometrika 80, 661–669 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Wu, C.F.J., Hamada, M.: Experiments: Planning, Analysis and Optimization, 2nd edn. Wiley, Hoboken (2009)zbMATHGoogle Scholar
  113. 113.
    Xiao, L., Lin, D.K.J., Bai, F.: Constructing definitive screening designs using conference matrices. J. Qual. Technol. 44, 2–8 (2012)Google Scholar
  114. 114.
    Xing, D., Wan, H., Yu Zhu, M., Sanchez, S.M., Kaymal, T.: Simulation screening experiments using Lasso-optimal supersaturated design and analysis: a maritime operations application. In: Pasupathy, R., Kim, S.H., Tolk, A., Hill, R., Kuhl, M.E. (eds.) Proceedings of the 2013 Winter Simulation Conference, Washington, DC, pp. 497–508 (2013)CrossRefGoogle Scholar
  115. 115.
    Xu, H., Phoa, F.K.H., Wong, W.K.: Recent developments in nonregular fractional factorial designs. Stat. Surv. 3, 18–46 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Yang, H., Butz, K.D., Duffy, D., Niebur, G.L., Nauman, E.A., Main, R.P.: Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microct-based finite element analysis. Bone 66, 131–139 (2014)CrossRefGoogle Scholar
  117. 117.
    Ye, K.Q.: Orthogonal column Latin hypercubes and their application in computer experiments. J. Am. Stat. Assoc. 93, 1430–1439 (1998)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Southampton Statistical Sciences Research InstituteUniversity of SouthamptonSouthampton, SO17 1BJUK

Personalised recommendations