Variational Methods

  • Maelle NodetEmail author
  • Arthur Vidard
Reference work entry


This contribution presents derivative-based methods for local sensitivity analysis, called Variational Sensitivity Analysis (VSA). If one defines an output called the response function, its sensitivity to input variations around a nominal value can be studied using derivative (gradient) information. The main issue of VSA is then to provide an efficient way of computing gradients.

This contribution first presents the theoretical grounds of VSA: framework and problem statement and tangent and adjoint methods. Then it covers practical means to compute derivatives, from naive to more sophisticated approaches, discussing their various merits. Finally, applications of VSA are reviewed, and some examples are presented, covering various applications fields: oceanography, glaciology, and meteorology.


Variational sensitivity analysis Variational methods Tangent model Adjoint model Gradient Automatic differentiation Derivative Local sensitivity analysis Stability analysis Geophysical applications Meteorology Glaciology Oceanography 


  1. 1.
    Ancell, B., Hakim, G.J.: Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting. Mon. Weather Rev. 135(12), 4117–4134 (2007)CrossRefGoogle Scholar
  2. 2.
    Ayoub, N.: Estimation of boundary values in a North Atlantic circulation model using an adjoint method. Ocean Model. 12(3–4), 319–347 (2006)CrossRefGoogle Scholar
  3. 3.
    Cacuci, D.G.: Sensitivity and Uncertainty Analysis: Theory. CRC Press, Boca Raton (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    Castaings, W., Dartus, D., Le Dimet, F.X., Saulnier, G.M.: Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods. Hydrol. Earth Syst. Sci. 13(4), 503–517 (2009)CrossRefGoogle Scholar
  5. 5.
    Chen, S.G., Wu, C.C., Chen, J.H., Chou, K.H.: Validation and interpretation of adjoint-derived sensitivity steering vector as targeted observation guidance. Mon. Weather Rev. 139, 1608–1625 (2011)CrossRefGoogle Scholar
  6. 6.
    Daescu, D.N., Navon, I.M.: Reduced-order observation sensitivity in 4D-var data assimilation. In: American Meteorological Society 88th AMS Annual Meeting, New Orleans (2008)Google Scholar
  7. 7.
    Desroziers, G., Camino, J.T., Berre, L.: 4DEnVar: link with 4D state formulation of variational assimilation and different possible implementations. Q. J. R. Meteorol. Soc. 140, 2097–2110 (2014)CrossRefGoogle Scholar
  8. 8.
    Errico, R.M., Vukicevic, T.: Sensitivity analysis using an adjoint of the PSU-NCAR mesoseale model. Mon. Weather Rev. 120(8), 1644–1660 (1992)CrossRefGoogle Scholar
  9. 9.
    Giering, R., Kaminski, T.: Recipes for adjoint code construction. ACM Trans. Math. Softw. 24(4), 437–474 (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia (2008)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hamby, D.M.: A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 32(2), 135–154 (1994)CrossRefGoogle Scholar
  12. 12.
    Hascoet, L., Pascual, V.: The Tapenade automatic differentiation tool: principles, model, and specification. ACM Trans. Math. Softw. 39(3), 20 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Heimbach, P., Bugnion, V.: Greenland ice-sheet volume sensitivity to basal, surface and initial conditions derived from an adjoint model. Ann. Glaciol. 50, 67–80 (2009)CrossRefGoogle Scholar
  14. 14.
    Hoover, B.T., Morgan, M.C.: Dynamical sensitivity analysis of tropical cyclone steering using an adjoint model. Mon. Weather Rev. 139, 2761–2775 (2011)CrossRefGoogle Scholar
  15. 15.
    Lauvernet, C., Hascoët, L., Dimet, F.X.L., Baret, F.: Using automatic differentiation to study the sensitivity of a crop model. In: Forth, S., Hovland, P., Phipps, E., Utke, J., Walther, A. (eds.) Recent Advances in Algorithmic Differentiation. Lecture Notes in Computational Science and Engineering, vol. 87, pp. 59–69. Springer, Berlin (2012)CrossRefGoogle Scholar
  16. 16.
    Le Dimet, F.X., Ngodock, H.E., Luong, B., Verron, J.: Sensitivity analysis in variational data assimilation. J. Meteorol. Soc. Jpn. Ser. 2, 75, 135–145 (1997)Google Scholar
  17. 17.
    Lellouche, J.M., Devenon, J.L., Dekeyser, I.: Boundary control of Burgers’ equation—a numerical approach. Comput. Math. Appl. 28(5), 33–34 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li, S., Petzold, L.: Adjoint sensitivity analysis for time-dependent partial differential equations with adaptive mesh refinement. J. Comput. Phys. 198(1), 310–325 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Liu, C., Xiao, Q., Wang, B.: An ensemble-based four-dimensional variational data assimilation scheme. Part I: technical formulation and preliminary test. Mon. Weather Rev. 136(9), 3363–3373 (2008)Google Scholar
  20. 20.
    Marotzke, J., Wunsch, C., Giering, R., Zhang, K., Stammer, D., Hill, C., Lee, T.: Construction of the adjoint MIT ocean general circulation model and application to atlantic heat transport sensitivity. J. Geophys. Res. 104(29), 529–29 (1999)Google Scholar
  21. 21.
    Mu, M., Duan, W., Wang, B.: Conditional nonlinear optimal perturbation and its applications. Nonlinear Process. Geophys. 10(6), 493–501 (2003)CrossRefGoogle Scholar
  22. 22.
    Qin, X., Mu, M.: Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts. Q.J. R. Meteorol. Soc. 138, 185–197 (2011)Google Scholar
  23. 23.
    Rivière, O., Lapeyre, G., Talagrand, O.: A novel technique for nonlinear sensitivity analysis: application to moist predictability. Q. J. R. Meteorol. Soc. 135(643), 1520–1537 (2009)CrossRefGoogle Scholar
  24. 24.
    Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis for chemical models. Chem. Rev. 105(7), 2811–2828 (2005)CrossRefzbMATHGoogle Scholar
  25. 25.
    Sandu, A., Daescu, D.N., Carmichael, G.R.: Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: Part I—theory and software tools. Atmos. Environ. 37(36), 5083–5096 (2003)CrossRefGoogle Scholar
  26. 26.
    Sandu, A., Daescu, D.N., Carmichael, G.R., Chai, T.: Adjoint sensitivity analysis of regional air quality models. J. Comput. Phys. 204(1), 222–252 (2005)CrossRefzbMATHGoogle Scholar
  27. 27.
    Sévellec, F.: Optimal surface salinity perturbations influencing the thermohaline circulation. J. Phys. Oceanogr. 37(12), 2789–2808 (2007)CrossRefGoogle Scholar
  28. 28.
    Sykes, J.F., Wilson, J.L., Andrews, R.W.: Sensitivity analysis for steady state groundwater flow using adjoint operators. Water Resour. Res. 21(3), 359–371 (1985)CrossRefGoogle Scholar
  29. 29.
    Thuburn, J., Haine, T.W.N.: Adjoints of nonoscillatory advection schemes. J. Comput. Phys. 171(2), 616–631 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Vidard, A.: Data assimilation and adjoint methods for geophysical applications. PhD thesis, Université de Grenoble, Habilitation thesis (2012)Google Scholar
  31. 31.
    Vidard, A., Rémy, E., Greiner, E.: Sensitivity analysis through adjoint method: application to the GLORYS reanalysis. Contrat n 08/D43, Mercator Océan (2011)Google Scholar
  32. 32.
    Wu, C.C., Chen, J.H., Lin, P.H., Chou, K.H.: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci. 64(7), 2611–2626 (2007)CrossRefGoogle Scholar
  33. 33.
    Zhu, Y., Gelaro, R.: Observation sensitivity calculations using the adjoint of the gridpoint statistical interpolation (GSI) analysis system. Mon. Weather Rev. 136(1), 335–351 (2008)CrossRefGoogle Scholar
  34. 34.
    Zou, X., Barcilon, A., Navon, I.M., Whitaker, J., Cacuci, D.G.: An adjoint sensitivity study of blocking in a two-layer isentropic model. Mon. Weather Rev. 121, 2833–2857 (1993)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Laboratoire Jean Kuntzmann (LJK)University Grenoble AlpesGrenobleFrance
  2. 2.INRIARocquencourtFrance

Personalised recommendations