Advertisement

Rare-Event Simulation

  • James L. BeckEmail author
  • Konstantin M. Zuev
Reference work entry

Abstract

Rare events are events that are expected to occur infrequently or, more technically, those that have low probabilities (say, order of 10−3 or less) of occurring according to a probability model. In the context of uncertainty quantification, the rare events often correspond to failure of systems designed for high reliability, meaning that the system performance fails to meet some design or operation specifications. As reviewed in this section, computation of such rare-event probabilities is challenging. Analytical solutions are usually not available for nontrivial problems, and standard Monte Carlo simulation is computationally inefficient. Therefore, much research effort has focused on developing advanced stochastic simulation methods that are more efficient. In this section, we address the problem of estimating rare-event probabilities by Monte Carlo simulation, importance sampling, and subset simulation for highly reliable dynamic systems.

Keywords

Rare-event simulation Dynamic system reliability Monte carlo simulation Subset simulation Importance sampling Splitting 

References

  1. 1.
    Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithms and Analysis. Springer, New York (2010)zbMATHGoogle Scholar
  2. 2.
    Au, S.K.: Importance sampling for elasto-plastic systems using adapted process with deterministic control. Int. J. Nonlinear Mech. 44, 189–198 (2009)CrossRefGoogle Scholar
  3. 3.
    Au, S.K., Beck, J.L.: First excursion probabilities for linear systems by very efficient importance sampling. Prob. Eng. Mech. 16, 193–207 (2001)CrossRefGoogle Scholar
  4. 4.
    Au, S.K., Beck, J.L.: Estimation of small failure probabilities in high dimensions by subset simulation. Prob. Eng. Mech. 16(4), 263–277 (2001)CrossRefGoogle Scholar
  5. 5.
    Au, S.K., Beck, J.L.: Importance sampling in high dimensions. Struct. Saf. 25(2), 139–163 (2003)CrossRefGoogle Scholar
  6. 6.
    Au, S.K., Ching, J., Beck, J.L.: Application of subset simulation methods to reliability benchmark problems. Struct. Saf. 29(3), 183–193 (2007)CrossRefGoogle Scholar
  7. 7.
    Au, S.K., Wang, Y.: Engineering Risk Assessment and Design with Subset Simulation. Wiley, Singapore (2014)CrossRefGoogle Scholar
  8. 8.
    Au, S.K., Wang, Z.H., Loa, S.M.: Compartment fire risk analysis by advanced Monte Carlo method. Eng. Struct. 29, 2381–2390 (2007)CrossRefGoogle Scholar
  9. 9.
    Bayes, T.: An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond. 53, 370–418 (1763). Reprinted in Biometrika 45, 296–315 (1989)Google Scholar
  10. 10.
    Beck, J.L.: Bayesian system identification based on probability logic. Struct. Control Health Monit. 17, 825–847 (2010)CrossRefGoogle Scholar
  11. 11.
    Beck, J.L., Au, S.K.: Reliability of Dynamic Systems using Stochastic Simulation. In: Proceedings of the 6th European Conference on Structural Dynamics, Paris (2005)Google Scholar
  12. 12.
    Botev, Z.I., Kroese, D.P.: Efficient Monte Carlo simulation via the generalized splitting method. Stat. Comput. 22(1), 1–16 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bourinet, J.M., Deheeger, F., Lemaire, M.: Assessing small failure probabilities by combined subset simulation and support vector machines. Struct. Saf. 33(6), 343–353 (2011)CrossRefGoogle Scholar
  14. 14.
    Bucher, C., Bourgund, U.: A fast and efficient response surface approach for structural reliability problems. Struct. Saf. 7, 57–66 (1990)CrossRefGoogle Scholar
  15. 15.
    Bucklew, J.A.: Introduction to Rare Event Simulation. Springer Series in Statistics. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Cadini, F., Avram, D., Pedroni, N., Zio, E.: Subset simulation of a reliability model for radioactive waste repository performance assessment. Reliab. Eng. Syst. Saf. 100, 75–83 (2012)CrossRefGoogle Scholar
  17. 17.
    Ching, J., Au, S.K., Beck, J.L.: Reliability estimation for dynamical systems subject to stochastic excitation using subset simulation with splitting. Comput. Methods Appl. Mech. Eng. 194, 1557–1579 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ching, J., Beck, J.L., Au, S K.: Hybrid subset simulation method for reliability estimation of dynamical systems subject to stochastic excitation. Prob. Eng. Mech. 20, 199–214 (2005)Google Scholar
  19. 19.
    Deng, S., Giesecke, K., Lai, T.L.: Sequential importance sampling and resampling for dynamic portfolio credit risk. Oper. Res. 60(1), 78–91 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ditlevsen, O., Madsen, H.O.: Structural Reliability Methods. Wiley, Chichester/New York (1996)Google Scholar
  21. 21.
    Dubourg, V., Sudret, B., Deheeger, F.: Meta-model based importance sampling for structural reliability analysis. Prob. Eng. Mech. 33, 47–57 (2013)CrossRefGoogle Scholar
  22. 22.
    Dunn, W.L., Shultis, J.K.: Exploring Monte Carlo Methods. Elsevier, Amsterdam/Boston (2012)zbMATHGoogle Scholar
  23. 23.
    Hurtado, J.: Structural Reliability: Statistical Learning Perspectives. Springer, Berlin/New York (2004)CrossRefzbMATHGoogle Scholar
  24. 24.
    Jalayer, F., Beck, J.L.: Effects of two alternative representations of ground-motion uncertainty on probabilistic seismic demand assessment of structures. Earthq. Eng. Struct. Dyn. 37, 61–79 (2008)CrossRefGoogle Scholar
  25. 25.
    Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  27. 27.
    Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Dover, Mineola (2009)zbMATHGoogle Scholar
  28. 28.
    Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling. Natl. Bur. Stand. Appl. Math. Ser. 12, 27–30 (1951)Google Scholar
  29. 29.
    Kahn, H., Marshall, A. W.: Methods of reducing sample size in Monte Carlo computations. J. Oper. Res. Soc. Am. 1(5), 263–278 (1953)Google Scholar
  30. 30.
    Katafygiotis, L.S., Cheung, S.H.: A two-stage subset simulation-based approach for calculating the reliability of inelastic structural systems subjected to Gaussian random excitations. Comput. Methods Appl. Mech. Eng. 194, 1581–1595 (2005)CrossRefzbMATHGoogle Scholar
  31. 31.
    Katafygiotis, L.S., Cheung, S.H.: Application of spherical subset simulation method and auxiliary domain method on a benchmark reliability study. Struct. Saf. 29(3), 194–207 (2007)CrossRefGoogle Scholar
  32. 32.
    Katafygiotis, L.S., Zuev, K.M.: Geometric insight into the challenges of solving high-dimensional reliability problems. Prob. Eng. Mech. 23, 208–218 (2008)CrossRefGoogle Scholar
  33. 33.
    Katafygiotis, L.S., Zuev, K.M.: Estimation of small failure probabilities in high dimensions by adaptive linked importance sampling. In: Proceedings of the COMPDYN-2007, Rethymno (2007)Google Scholar
  34. 34.
    Laplace, P.S.: Theorie Analytique des Probabilites. Courcier, Paris (1812)zbMATHGoogle Scholar
  35. 35.
    Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2001)zbMATHGoogle Scholar
  36. 36.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)CrossRefGoogle Scholar
  37. 37.
    Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44, 335–341 (1949)CrossRefzbMATHGoogle Scholar
  38. 38.
    Metropolis, N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)CrossRefGoogle Scholar
  39. 39.
    Pellissetti, M.F., Schuëller, G.I., Pradlwarter, H.J., Calvi, A., Fransen, S., Klein, M.: Reliability analysis of spacecraft structures under static and dynamic loading. Comput. Struct. 84, 1313–1325 (2006)CrossRefGoogle Scholar
  40. 40.
    Papadimitriou, C., Beck, J.L., Katafygiotis, L.S.: Updating robust reliability using structural test data. Prob. Eng. Mech. 16, 103–113 (2001)CrossRefGoogle Scholar
  41. 41.
    Papadopoulos, V. Giovanis, D.G., Lagaros, N.D., Papadrakakis, M.: Accelerated subset simulation with neural networks for reliability analysis. Comput. Methods Appl. Mech. Eng. 223, 70–80 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Pradlwarter, H.J., Schuëller, G.I., Melnik-Melnikov, P.G.: Reliability of MDOF-systems. Prob. Eng. Mech. 9, 235–43 (1994)CrossRefGoogle Scholar
  43. 43.
    Rackwitz, R.: Reliability analysis – a review and some perspectives. Struct. Saf. 32, 365–395 (2001)CrossRefGoogle Scholar
  44. 44.
    Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  45. 45.
    Ross, S.M.: A First Course in Probability, 8th edn. Prentice Hall, Upper Saddle River (2009)zbMATHGoogle Scholar
  46. 46.
    Santoso, A.M., Phoon, K.K., Quek, S.T.: Modified Metropolis-Hastings algorithm with reduced chain correlation for efficient subset simulation. Prob. Eng. Mech. 26, 331–341 (2011)CrossRefGoogle Scholar
  47. 47.
    Schuëller, G.I., Pradlwarter, H.J.: Benchmark study on reliability estimation in higher dimensions of structural systems – an overview. Struct. Saf. 29(3), 167–182 (2007)CrossRefGoogle Scholar
  48. 48.
    Schuëller, G.I., Pradlwarter, H.J., Koutsourelakis, P.S.: A critical appraisal of reliability estimation procedures for high dimensions. Prob. Eng. Mech. 19, 463–474 (2004)CrossRefGoogle Scholar
  49. 49.
    Sichani, M.T., Nielsen, S.R.K.: First passage probability estimation of wind turbines by Markov chain Monte Carlo. Struct. Infrastruct. Eng. 9, 1067–1079 (2013)CrossRefGoogle Scholar
  50. 50.
    Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer, New York (1982)CrossRefzbMATHGoogle Scholar
  51. 51.
    Taflanidis, A.A., Beck, J.L.: Analytical approximation for stationary reliability of certain and uncertain linear dynamic systems with higher dimensional output. Earthq. Eng. Struct. Dyn. 35, 1247–1267 (2006)CrossRefGoogle Scholar
  52. 52.
    Thunnissen, D.P., Au, S.K., Tsuyuki, G.T.: Uncertainty quantification in estimating critical spacecraft component temperatures. AIAA J. Thermophys. Heat Transf. 21(2), 422–430 (2007)CrossRefGoogle Scholar
  53. 53.
    Valdebenito, M.A., Pradlwarter, H.J., Schuëller, G.I.: The role of the design point for calculating failure probabilities in view of dimensionality and structural nonlinearities. Struct. Saf. 32, 101–111 (2010)CrossRefGoogle Scholar
  54. 54.
    Villén-Altamirano, M., Villén-Altamirano, J.: Analysis of RESTART simulation: theoretical basis and sensitivity study. Eur. Trans. Telecommun. 13(4), 373–386 (2002)CrossRefzbMATHGoogle Scholar
  55. 55.
    Zuev, K.: Subset simulation method for rare event estimation: an introduction. In: M. Beer et al. (Eds.) Encyclopedia of Earthquake Engineering. Springer, Berlin/Heidelberg (2015). Available on-line at http://www.springerreference.com/docs/html/chapterdbid/369348.html
  56. 56.
    Zuev, K.M., Beck, J.L., Au. S.K., Katafygiotis, L.S.: Bayesian post-processor and other enhancements of subset simulation for estimating failure probabilities in high dimensions. Comput. Struct. 92–93, 283–296 (2012)Google Scholar
  57. 57.
    Zuev, K.M., Katafygiotis, L.S.: Modified Metropolis-Hastings algorithm with delayed rejection. Prob. Eng. Mech. 26, 405–412 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Computing and Mathematical SciencesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations