Advertisement

Low-Rank Tensor Methods for Model Order Reduction

  • Anthony NouyEmail author
Reference work entry

Abstract

Parameter-dependent models arise in many contexts such as uncertainty quantification, sensitivity analysis, inverse problems, or optimization. Parametric or uncertainty analyses usually require the evaluation of an output of a model for many instances of the input parameters, which may be intractable for complex numerical models. A possible remedy consists in replacing the model by an approximate model with reduced complexity (a so-called reduced order model) allowing a fast evaluation of output variables of interest. This chapter provides an overview of low-rank methods for the approximation of functions that are identified either with order-two tensors (for vector-valued functions) or higher-order tensors (for multivariate functions). Different approaches are presented for the computation of low-rank approximations, either based on samples of the function or on the equations that are satisfied by the function, the latter approaches including projection-based model order reduction methods. For multivariate functions, different notions of ranks and the corresponding low-rank approximation formats are introduced.

Keywords

High-dimensional problems Low-rank approximation Model order reduction Parameter-dependent equations Stochastic equations Uncertainty quantification 

References

  1. 1.
    Bachmayr, M., Dahmen, W.: Adaptive near-optimal rank tensor approximation for high-dimensional operator equations. Found. Comput. Math. 15(4), 839–898 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bachmayr, M., Schneider, R.: Iterative Methods Based on Soft Thresholding of Hierarchical Tensors (Jan 2015). ArXiv e-prints 1501.07714Google Scholar
  3. 3.
    Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format. Numer. Linear Algebra Appl. 20(1), 27–43 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ballani, J., Grasedyck, L., Kluge, M.: Black box approximation of tensors in hierarchical tucker format. Linear Algebra Appl. 438(2), 639–657 (2013). Tensors and Multilinear AlgebraGoogle Scholar
  5. 5.
    Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. 339(9), 667–672 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bebendorf, M., Maday, Y., Stamm, B.: Comparison of some reduced representation approximations. In: Quarteroni, A., Rozza, G. (eds.) Reduced Order Methods for Modeling and Computational Reduction. Volume 9 of MS&A – Modeling, Simulation and Applications, pp. 67–100. Springer International Publishing, Cham (2014)Google Scholar
  7. 7.
    Beylkin, G., Garcke, B., Mohlenkamp, M.J.: Multivariate regression and machine learning with sums of separable functions. J. Comput. Phys. 230, 2345–2367 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Binev, P., Cohen, A., Dahmen, W., Devore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Buffa, A., Maday, Y., Patera, A.T., Prud’Homme, C., Turinici, G.: A priori convergence of the Greedy algorithm for the parametrized reduced basis method. ESAIM: Math. Model. Numer. Anal. 46(3), 595–603 (2012). Special volume in honor of Professor David GottliebGoogle Scholar
  10. 10.
    Cances, E., Ehrlacher, V., Lelievre, T.: Convergence of a greedy algorithm for high-dimensional convex nonlinear problems. Math. Models Methods Appl. Sci. 21(12), 2433–2467 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Casenave, F., Ern, A., Lelièvre, T.: A nonintrusive reduced basis method applied to aeroacoustic simulations. Adv. Comput. Math. 41(5), 961–986 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, P., Quarteroni, A., Rozza, G.: A weighted reduced basis method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 51(6), 3163–3185 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chen, Y., Gottlieb, S., Maday, Y.: Parametric analytical preconditioning and its applications to the reduced collocation methods. C. R. Math. 352(7/8), 661–666 (2014). ArXiv e-printsGoogle Scholar
  14. 14.
    Chevreuil, M., Lebrun, R., Nouy, A., Rai, P.: A least-squares method for sparse low rank approximation of multivariate functions. SIAM/ASA J. Uncertain. Quantif. 3(1), 897–921 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cohen, A., Devore, R.: Approximation of high-dimensional parametric PDEs. Acta Numer. 24, 1–159 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cohen, A., Devore, R.: Kolmogorov widths under holomorphic mappings. IMA J. Numer. Anal. (2015)Google Scholar
  17. 17.
    Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland, Amsterdam/New York (1993)zbMATHGoogle Scholar
  18. 18.
    DeVore, R., Petrova, G., Wojtaszczyk, P.: Greedy algorithms for reduced bases in banach spaces. Constr. Approx. 37(3), 455–466 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dolgov, S., Khoromskij, B.N., Litvinenko, A., Matthies, H. G.: Polynomial chaos expansion of random coefficients and the solution of stochastic partial differential equations in the tensor train format. SIAM/ASA J. Uncertain. Quantif. 3(1), 1109–1135 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Doostan, A., Ghanem, R., Red-Horse, J.: Stochastic model reductions for chaos representations. Comput. Methods Appl. Mech. Eng. 196(37–40), 3951–3966 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Doostan, A., Validi, A., Iaccarino, G.: Non-intrusive low-rank separated approximation of high-dimensional stochastic models. Comput. Methods Appl. Mech. Eng. 263(0), 42–55 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Espig, M., Grasedyck, L., Hackbusch, W.: Black box low tensor-rank approximation using fiber-crosses. Constr. Approx. 30, 557–597 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Espig, M., Hackbusch, W., Khachatryan, A.: On the convergence of alternating least squares optimisation in tensor format representations (May 2015). ArXiv e-prints 1506.00062Google Scholar
  24. 24.
    Falcó, A., Nouy, A.: Proper generalized decomposition for nonlinear convex problems in tensor banach spaces. Numerische Mathematik 121, 503–530 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Falcó, A., Hackbusch, W., Nouy, A.: Geometric structures in tensor representations. Found. Comput. Math. (Submitted)Google Scholar
  26. 26.
    Giraldi, L., Liu, D., Matthies, H.G., Nouy, A.: To be or not to be intrusive? The solution of parametric and stochastic equations—proper generalized decomposition. SIAM J. Sci. Comput. 37(1), A347–A368 (2015)zbMATHGoogle Scholar
  27. 27.
    Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31, 2029–2054 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36(1), 53–78 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Volume 42 of Springer Series in Computational Mathematics. Springer, Heidelberg (2012)Google Scholar
  30. 30.
    Hackbusch, W., Kuhn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706–722 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Hackbusch, W., Khoromskij, B., Tyrtyshnikov, E.: Approximate iterations for structured matrices. Numerische Mathematik 109, 365–383 (2008). 10.1007/s00211-008-0143-0.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Holtz, S., Rohwedder, T., Schneider, R.: On manifolds of tensors of fixed tt-rank. Numerische Mathematik 120(4), 701–731 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Kahlbacher, M., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems. Discuss. Math.: Differ. Incl. Control Optim. 27, 95–117 (2007)Google Scholar
  34. 34.
    Khoromskij, B.: Tensors-structured numerical methods in scientific computing: survey on recent advances. Chemom. Intell. Lab. Syst. 110(1), 1–19 (2012)CrossRefGoogle Scholar
  35. 35.
    Khoromskij, B.B., Schwab, C.: Tensor-structured Galerkin approximation of parametric and stochastic elliptic pdes. SIAM J. Sci. Comput. 33(1), 364–385 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Kressner, D., Tobler, C.: Low-rank tensor krylov subspace methods for parametrized linear systems. SIAM J. Matrix Anal. Appl. 32(4), 1288–1316 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Generalized reduced basis methods and n-width estimates for the approximation of the solution manifold of parametric pdes. In: Brezzi, F., Colli Franzone, P., Gianazza, U., Gilardi, G. (eds.) Analysis and Numerics of Partial Differential Equations. Volume 4 of Springer INdAM Series, pp. 307–329. Springer, Milan (2013)CrossRefGoogle Scholar
  39. 39.
    Lubich, C., Rohwedder, T., Schneider, R., Vandereycken, B.: Dynamical approximation by hierarchical tucker and tensor-train tensors. SIAM J. Matrix Anal. Appl. 34(2), 470–494 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Maday, Y., Mula, O.: A generalized empirical interpolation method: application of reduced basis techniques to data assimilation. In: Brezzi, F., Colli Franzone, P., Gianazza, U., Gilardi, G. (eds.) Analysis and Numerics of Partial Differential Equations. Volume 4 of Springer INdAM Series, pP. 221–235. Springer, Milan (2013)CrossRefGoogle Scholar
  41. 41.
    Maday, Y., Nguyen, N.C., Patera, A.T., Pau, G.S.H.: A general multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8(1), 383–404 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(12–16), 1295–1331 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Matthies, H.G., Zander, E.: Solving stochastic systems with low-rank tensor compression. Linear Algebra Appl. 436(10), 3819–3838 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Nouy, A.: A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 196(45–48), 4521–4537 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Nouy, A.: Generalized spectral decomposition method for solving stochastic finite element equations: invariant subspace problem and dedicated algorithms. Comput. Methods Appl. Mech. Eng. 197, 4718–4736 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Nouy, A.: Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Arch. Comput. Methods Eng. 17(4), 403–434 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Oseledets, I., Tyrtyshnikov, E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31(5), 3744–3759 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Oseledets, I., Tyrtyshnikov, E.: TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 432(1), 70–88 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Patera, A.T., Rozza, G.: Reduced Basis Approximation and A-Posteriori Error Estimation for Parametrized PDEs. MIT-Pappalardo Graduate Monographs in Mechanical Engineering. Massachusetts Institute of Technology, Cambridge (2007)Google Scholar
  51. 51.
    Pietsch, A.: Eigenvalues and s-Numbers. Cambridge University Press, Cambridge/New York (1987)zbMATHGoogle Scholar
  52. 52.
    Prud’homme, C., Rovas, D., Veroy, K., Maday, Y., Patera, A.T., Turinici, G.: Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J. Fluids Eng. 124(1), 70–80 (2002)CrossRefGoogle Scholar
  53. 53.
    Quarteroni, A., Rozza, G., Manzoni, A.: Certified reduced basis approximation for parametrized partial differential equations and applications. J. Math. Ind 1(1), 1–49 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Rauhut, H., Schneider, R., Stojanac, Z.: Tensor completion in hierarchical tensor representations (Apr 2014). ArXiv e-printsGoogle Scholar
  55. 55.
    Schneider, R., Uschmajew, A.: Approximation rates for the hierarchical tensor format in periodic sobolev spaces. J. Complex. 30(2), 56–71 (2014) Dagstuhl 2012Google Scholar
  56. 56.
    Temlyakov, V.: Greedy approximation in convex optimization (June 2012). ArXiv e-printsGoogle Scholar
  57. 57.
    Uschmajew, A., Vandereycken, B.: The geometry of algorithms using hierarchical tensors. Linear Algebra Appl 439(1), 133–166 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Zahm, O., Nouy, A.: Interpolation of inverse operators for preconditioning parameter-dependent equations (April 2015). ArXiv e-printsGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Computer Science and MathematicsGeM, Ecole Centrale NantesNantesFrance

Personalised recommendations