Solution Algorithms for Stochastic Galerkin Discretizations of Differential Equations with Random Data

  • Howard ElmanEmail author
Reference work entry


This chapter discusses algorithms for solving systems of algebraic equations arising from stochastic Galerkin discretization of partial differential equations with random data, using the stochastic diffusion equation as a model problem. For problems in which uncertain coefficients in the differential operator are linear functions of random parameters, a variety of efficient algorithms of multigrid and multilevel type are presented, and, where possible, analytic bounds on convergence of these methods are derived. Some limitations of these approaches for problems that have nonlinear dependence on parameters are outlined, but for one example of such a problem, the diffusion equation with a diffusion coefficient that has exponential structure, a strategy is described for which the reformulated problem is also amenable to efficient solution by multigrid methods.


Convergence analysis Iterative methods Multigrid Stochastic Galerkin 


  1. 1.
    Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Braess, D.: Finite Elements. Cambridge University Press, London (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    Christakos, G.: Random Field Models in Earth Sciences. Academic, New York (1992)zbMATHGoogle Scholar
  4. 4.
    Elman, H., Furnival, D.: Solving the stochastic steady-state diffusion problem using multigrid. IMA J. Numer. Anal. 27, 675–688 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Elman, H.C., Furnival, D.G., Powell, C.E.: H(div) preconditioning for a mixed finite element formulation of the diffusion problem with random data. Math. Comput. 79, 733–760 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Elman, H.C., Miller, C.W., Phipps, E.T., Tuminaro, R.S.: Assessment of collocation and Galerkin approaches to linear diffusion equations with random data. Int J. Uncertain. Quantif. 1, 19–33 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers, 2nd edn. Oxford University Press, Oxford (2014)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ernst, O.G., Ullmann, E.: Stochastic Galerkin matrices. SIAM J. Matrix Anal. Appl. 31, 1818–1872 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ernst, O.G., Powell, C.E., Silvester, D.J., Ullmann, E.: Efficient solvers for a linear stochastic Galerkin mixed formulation of diffusion problems with random data. SIAM J. Sci. Comput. 31, 1424–1447 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ghanem, R.G., Kruger, R.M.: Numerical solution of spectral stochastic finite element systems. Comput. Methods Appl. Mech. Eng. 129, 289–303 (1996)CrossRefzbMATHGoogle Scholar
  12. 12.
    Grigoriu, M.: Probabilistic models for stochastic elliptic partial differential equations. J. Comput. Phys. 229, 8406–8429 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1991)CrossRefzbMATHGoogle Scholar
  14. 14.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, New York (1991)CrossRefzbMATHGoogle Scholar
  15. 15.
    Keese, A.: Numerical solution of systems with stochastic uncertainties. PhD thesis, Universität Braunschweig, Braunsweig (2004)Google Scholar
  16. 16.
    Le Maître, O.P., Knio, O.M., Debusschere, B.J., Najm, H.N., Ghanem, R.G.: A multigrid solver for two-dimensional stochastic diffusion equations. Comput. Methods Appl. Mech. Eng. 192, 4723–4744 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Le Maître, O.P., Knio, O.M.: Spectral Methods for Uncertainty Quantification. Springer, New York (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lord, G.J., Powell, C.E., Shardlow, T.: An Introduction to Computational Stochastic PDEs. Cambridge University Press, London (2014)CrossRefzbMATHGoogle Scholar
  19. 19.
    Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194, 1295–1331 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Pellissetti, M.F., Ghanem, R.G.: Iterative solution of systems of linear equations arising in the context of stochastic finite elements. Adv. Eng. Softw. 31, 607–616 (2000)CrossRefzbMATHGoogle Scholar
  21. 21.
    Powell, C.E., Elman, H.C.: Block-diagonal preconditioning for spectral stochastic finite element systems. IMA J. Numer. Anal. 29, 350–375 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Powell, C.E., Silvester, D.J.: Preconditioning steady-state Navier-Stokes equations with random data. SIAM J. Sci. Comput. 34, A2482–A2506 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Powell, C.E., Ullmann, E.: Preconditioning stochastic Galerkin saddle point matrices. SIAM J. Matrix Anal. Appl. 31, 2813–2840 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rosseel, E., Vandewalle, S.: Iterative methods for the stochastic finite element method. SIAM J. Sci. Comput. 32, 372–397 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ruge, J.W., Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S.F. (ed.) Multigrid Methods, Frontiers in Applied Mathematics, pp. 73–130. SIAM, Philadelphia (1987)CrossRefGoogle Scholar
  26. 26.
    Saynaeve, B., Rosseel, E., b Nicolai, Vandewalle, S.: Fourier mode analysis of multigrid methods for partial differential equations with random coefficients. J. Comput. Phys. 224, 132–149 (2007)Google Scholar
  27. 27.
    Smith, B., Bjørstad, P., Gropp, W.: Domain Decomposition. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  28. 28.
    Sousedík, B., Ghanem, R.G., Phipps, E.T.: Hierarchical Schur complement preconditioner for the stochastic Galerkin finite element methods. Numer. Linear Algorithm Appl. 21, 136–151 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ullmann, E.: A Kronecker product preconditioner for stochastic Galerkin finite element discretizations. SIAM J. Sci. Comput. 32, 923–946 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ullmann, E., Elman, H.C., Ernst, O.G.: Efficient iterative solvers for stochastic Galerkin discretizations of log-transformed random diffusion problems. SIAM J. Sci. Comput. 34, A659–A682 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Van Loan CF, Pitsianis, N.: Approximation with Kronecker products. In: Moonen, M.S., Golub, G.H., de Moor, B.L.R. (eds.) Linear Algebra for Large Scale and Real-time Applications, pp. 293–314. Kluwer, Dordrecht (1993)CrossRefGoogle Scholar
  32. 32.
    Wesseling, P.: An Introduction to Multigrid Methods. John Wiley & Sons, New York (1992)zbMATHGoogle Scholar
  33. 33.
    Xiu, D.: Numerical Methods for Stochastic Computations. Princeton University Press, Princeton (2010)zbMATHGoogle Scholar
  34. 34.
    Xiu, D., Karniadakis, G.E.: Modeling uncertainty in steady-state diffusion problems using generalized polynomial chaos. Comput. Methods Appl. Mech. Eng. 191, 4927–4948 (2002)CrossRefzbMATHGoogle Scholar
  35. 35.
    Zhang, D.: Stochastic Methods for Flow in Porous Media. Coping with Uncertainties. Academic, San Diego (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Computer Science and Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA

Personalised recommendations