Polynomial Chaos: Modeling, Estimation, and Approximation

  • Roger GhanemEmail author
  • John Red-Horse
Reference work entry


Polynomial chaos decompositions (PCE) have emerged over the past three decades as a standard among the many tools for uncertainty quantification. They provide a rich mathematical structure that is particularly well suited to enabling probabilistic assessments in situations where interdependencies between physical processes or between spatiotemporal scales of observables constitute credible constraints on system-level predictability. Algorithmic developments exploiting their structural simplicity have permitted the adaptation of PCE to many of the challenges currently facing prediction science. These include requirements for large-scale high-resolution computational simulations implicit in modern applications, non-Gaussian probabilistic models, and non-smooth dependencies and for handling general vector-valued stochastic processes. This chapter presents an overview of polynomial chaos that underscores their relevance to problems of constructing and estimating probabilistic models, propagating them through arbitrarily complex computational representations of underlying physical mechanisms, and updating the models and their predictions as additional constraints become known.


Polynomial chaos expansions Stochastic analysis Stochastic modeling Uncertainty quantification 


  1. 1.
    Adomian, G.: Stochastic Green’s functions. In: Bellman, R. (ed.) Proceedings of Symposia in Applied Mathematics. Volume 16: Stochastic Processes in Mathematical Physics and Engineering. American Mathematical Society, Providence (1964)Google Scholar
  2. 2.
    Adomian, G.: Stochastic Systems. Academic, New York (1983)zbMATHGoogle Scholar
  3. 3.
    Albeverio, S., Daletsky, Y., Kondratiev, Y., Streit, L.: Non-Gaussian infinite dimensional analysis. J. Funct. Anal. 138, 311–350 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arnst, M., Ghanem, R.: Probabilistic equivalence and stochastic model reduction in multiscale analysis. Comput. Methods Appl. Mech. Eng. 197(43–44), 3584–3592 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Arnst, M., Ghanem, R., Phipps, E., Red-Horse, J.: Dimension reduction in stochastic modeling of coupled problems. Int. J. Numer. Methods Eng. 92, 940–968 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arnst, M., Ghanem, R., Phipps, E., Red-Horse, J.: Measure transformation and efficient quadrature in reduced-dimensional stochastic modeling of coupled problems. Int. J. Numer. Methods Eng. 92, 1044–1080 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Arnst, M., Ghanem, R., Phipps, E., Red-Horse, J.: Reduced chaos expansions with random coefficients in reduced-dimensional stochastic modeling of coupled problems. Int. J. Numer. Methods Eng. 97(5), 352–376 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Arnst, M., Ghanem, R., Soize, C.: Identification of Bayesian posteriors for coefficients of chaos expansions. J. Comput. Phys. 229(9), 3134–3154 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Babuška, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Babuška, I., Tempone, R., Zouraris, G.E.: Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput. Methods Appl. Mech. Eng. 194(12–16), 1251–1294 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Benaroya, H., Rehak, M.: Finite element methods in probabilistic structural analysis: a selective review. Appl. Mech. Rev. 41(5), 201–213 (1988)CrossRefzbMATHGoogle Scholar
  12. 12.
    Berezansky, Y.M.: Infinite-dimensional non-Gaussian analysis and generalized translation operators. Funct. Anal. Appl. 30(4), 269–272 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bharucha-Reid, A.T.: On random operator equations in Banach space. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 7, 561–564 (1959)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Billingsley, P.: Probability and Measure. Wiley Interscience, New York (1995)zbMATHGoogle Scholar
  15. 15.
    Bose, A.G.: A theory of nonlinear systems. Technical report 309, Research Laboratory of Electronics, MIT (1956)Google Scholar
  16. 16.
    Boyce, E.W., Goodwin, B.E.: Random transverse vibration of elastic beams. SIAM J. 12(3), 613–629 (1964)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Brilliant, M.B.: Theory of the analysis of nonlinear systems. Technical report 345, Research Laboratory of Electronics, MIT (1958)Google Scholar
  18. 18.
    Cameron, R.H., Martin, W.T.: The orthogonal development of nonlinear funtions in a series of Fourier-Hermite functionals. Ann. Math. 48, 385–392 (1947)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chorin, A.: Hermite expansions in Monte-Carlo computation. J. Comput. Phys. 8, 472–482 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Cornish, E., Fisher, R.: Moments and cumulants in the specification of distributions. Rev. Int. Stat. Inst. 5(4), 307–320 (1938)CrossRefzbMATHGoogle Scholar
  21. 21.
    Das, S., Ghanem, R.: A bounded random matrix approach for stochastic upscaling. SIAM J. Multiscale Model. Simul. 8(1), 296–325 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Das, S., Ghanem, R., Finette, S.: Polynomial chaos representation of spatio-temporal random fields from experimental measurements. J. Comput. Phys. 228(23), 8726–8751 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Das, S., Ghanem, R., Spall, J.: Sampling distribution for polynomial chaos representation of data: a maximum-entropy and fisher information approach. SIAM J. Sci. Comput. 30(5), 2207–2234 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Debusschere, B., Najm, H., Matta, A., Knio, O., Ghanem, R., Le Maitre, O.: Protein labeling reactions in electrochemical microchannel flow: numerical simulation and uncertainty propagation. Phys. Fluids 15(8), 2238–2250 (2003)CrossRefzbMATHGoogle Scholar
  25. 25.
    Descelliers, C., Ghanem, R., Soize, C.: Maximum likelihood estimation of stochastic chaos representation from experimental data. Int. J. Numer. Methods Eng. 66(6), 978–1001 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Diggle, P., Gratton, R.: Monte Carlo methods of inference for implicit statistical models. J. R. Stat. Soc. Ser. B 46, 193–227 (1984)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Doostan, A., Ghanem, R., Red-Horse, J.: Stochastic model reduction for chaos representations. Comput. Methods Appl. Mech. Eng. 196, 3951–3966 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ernst, O.G., Ullmann, E.: Stochastic Galerkin matrices. SIAM J. Matrix Anal. Appl. 31(4), 1848–1872 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Fisher, R., Cornish, E.: The percentile points of distributions having known cumulants. Technometrics 2(2), 209–225 (1960)CrossRefzbMATHGoogle Scholar
  30. 30.
    Ganapathysubramanian, B., Zabaras, N.: Sparse grid collocation methods for stochastic natural convection problems. J. Comput. Phys. 225, 652–685 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    George, D.A.: Continuous nonlinear systems. Technical report 355, Research Laboratory of Electronics, MIT (1959)Google Scholar
  32. 32.
    Ghanem, R.: Hybrid stochastic finite elements: coupling of spectral expansions with Monte Carlo simulations. ASME J. Appl. Mech. 65, 1004–1009 (1998)CrossRefGoogle Scholar
  33. 33.
    Ghanem, R.: Scales of fluctuation and the propagation of uncertainty in random porous media. Water Resour. Res. 34(9), 2123–2136 (1998)CrossRefGoogle Scholar
  34. 34.
    Ghanem, R., Abras, J.: A general purpose library for stochastic finite element computations. In: Bathe, J. (ed.) Second MIT Conference on Computational Mechanics, Cambridge (2003)Google Scholar
  35. 35.
    Ghanem, R., Brzkala, V.: Stochastic finite element analysis for randomly layered media. ASCE J. Eng. Mech. 122(4), 361–369 (1996)CrossRefGoogle Scholar
  36. 36.
    Ghanem, R., Dham, S.: Stochastic finite element analysis for multiphase flow in heterogeneous porous media. Transp. Porous Media 32, 239–262 (1998)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ghanem, R., Doostan, A., Red-Horse, J.: A probabilistic construction of model validation. Comput. Methods Appl. Mech. Eng. 197, 2585–2595 (2008)CrossRefzbMATHGoogle Scholar
  38. 38.
    Ghanem, R., Red-Horse, J., Benjamin, A., Doostan, A., Yu, A.: Stochastic process model for material properties under incomplete information (AIAA 2007–1968). In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, 23–26 Apr 2007. AIAA (2007)Google Scholar
  39. 39.
    Ghanem, R., Sarkar, A.: Reduced models for the medium-frequency dynamics of stochastic systems. JASA 113(2), 834–846 (2003)CrossRefGoogle Scholar
  40. 40.
    Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991). Revised edition by Dover Publications, (2003)Google Scholar
  41. 41.
    Ghiocel, D., Ghanem, R.: Stochastic finite element analysis of seismic soil-structure interaction. J. Eng. Mech. 128(1), 66–77 (2002)CrossRefGoogle Scholar
  42. 42.
    Gikhman, I., Skorohod, A.: The Theory of Stochastic Processes I. Springer, Berlin (1974)Google Scholar
  43. 43.
    Guilleminot, J., Soize, C., Ghanem, R.: Stochastic representation for anisotropic permeability tensor random fields. Int. J. Numer. Anal. Methods Geomech. 36, 1592–1608 (2012)CrossRefGoogle Scholar
  44. 44.
    Hart, G.C., Collins, J.D.: The treatment of randomness in finite element modelling. In: SAE Shock and Vibrations Symposium, Los Angeles, pp. 2509–2519 (1970)Google Scholar
  45. 45.
    Hasselman, T.K., Hart, G.C.: Modal analysis of random structural systems. ASCE J. Eng. Mech. 98(EM3), 561–579 (1972)Google Scholar
  46. 46.
    Hida, T.: White noise analysis and nonlinear filtering problems. Appl. Math. Optim. 2, 82–89 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Hida, T., Kuo, H.-H., Potthoff, J., Streit, L.: White Noise: An Infinite Dimensional Calculus. Kluwer Academic Publishers, Dordrecht/Boston (1993)CrossRefzbMATHGoogle Scholar
  48. 48.
    Imamura, T., Meecham, W.: Wiener-Hermite expansion in model turbulence in the late decay stage. J. Math. Phys. 6(5), 707–721 (1965)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Itô, K.: Multiple Wiener integrals. J. Math. Soc. Jpn. 3(1), 157–169 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Itô, K.: Spectral type of shift transformations of differential process with stationary increments. Trans. Am. Math. Soc. 81, 253–263 (1956)CrossRefzbMATHGoogle Scholar
  51. 51.
    Jahedi, A., Ahmadi, G.: Application of Wiener-Hermite expansion to nonstationary random vibration of a Duffing oscillator. ASME J. Appl. Mech. 50, 436–442 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Kallianpur, G.: Stochastic Filtering Theory. Springer, New York (1980)CrossRefzbMATHGoogle Scholar
  53. 53.
    Klein, S., Yasui, S.: Nonlinear systems analysis with non-Gaussian white stimuli: General basis functionals and kernels. IEEE Tran. Inf. Theory IT-25(4), 495–500 (1979)CrossRefzbMATHGoogle Scholar
  54. 54.
    Kondratiev, Y., Da Silva, J., Streit, L., Us, G.: Analysis on Poisson and Gamma spaces. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 1(1), 91–117 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Lévy, P.: Leçons d’Analyses Fonctionelles. Gauthier-Villars, Paris (1922)Google Scholar
  56. 56.
    Li, R., Ghanem, R.: Adaptive polynomial chaos simulation applied to statistics of extremes in nonlinear random vibration. Probab. Eng. Mech. 13(2), 125–136 (1998)CrossRefGoogle Scholar
  57. 57.
    Liu, W.K., Besterfield, G., Mani, A.: Probabilistic finite element methods in nonlinear structural dynamics. Comput. Methods Appl. Mech. Eng. 57, 61–81 (1986)CrossRefGoogle Scholar
  58. 58.
    Lytvynov, E.: Multiple Wiener integrals and non-Gaussian white noise: a Jacobi field approach. Methods Funct. Anal. Topol. 1(1), 61–85 (1995)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Le Maitre, O., Najm, H., Ghanem, R., Knio, O.: Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J. Comput. Phys. 197(2), 502–531 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Le Maitre, O., Reagan, M., Najm, H., Ghanem, R., Knio, O.: A stochastic projection method for fluid flow. II: random process. J. Comput. Phys. 181, 9–44 (2002)zbMATHGoogle Scholar
  61. 61.
    Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(12–16), 1295–1331 (2005). Special Issue on Computational Methods in Stochastic Mechanics and Reliability AnalysisGoogle Scholar
  62. 62.
    Meidani, H., Ghanem, R.: Uncertainty quantification for Markov chain models. Chaos 22(4) (2012)Google Scholar
  63. 63.
    Nakagiri, S., Hisada, T.: Stochastic finite element method applied to structural analysis with uncertain parameters. In: Proceeding of the International Conference on FEM, pp. 206–211 (1982)Google Scholar
  64. 64.
    Nakayama, A., Kuwahara, F., Umemoto, T., Hayashi, T.: Heat and fluid flow within an anisotropic porous medium. Trans. ASME 124, 746–753 (2012)CrossRefGoogle Scholar
  65. 65.
    Ogura, H.: Orthogonal functionals of the Poisson process. IEEE Trans. Inf. Theory IT-18(4), 473–481 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Pawlowski, R., Phipps, R., Salinger, A., Owen, S., Ciefert, C., Stalen, A.: Automating embedded analysis capabilities and managing software complexity in multiphysics simulation, Part II: application to partial differential equations. Sci. Program. 20(3), 327–345 (2012)Google Scholar
  67. 67.
    Pellissetti, M.F., Ghanem, R.G.: Iterative solution of systems of linear equations arising in the context of stochastic finite elements. Adv. Eng. Softw. 31(8–9), 607–616 (2000)CrossRefzbMATHGoogle Scholar
  68. 68.
    Powell, C.E., Elman, H.C.: Block-diagonal preconditioning for spectral stochastic finite-element systems. IMA J. Numer. Anal. 29(2), 350–375 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Pugachev, V., Sinitsyn, I.: Stochastic Systems: Theory and Applications. World Scientific, River Edge (2001)zbMATHGoogle Scholar
  70. 70.
    Red-Horse, J., Ghanem, R.: Elements of a functional analytic approach to probability. Int. J. Numer. Methods Eng. 80(6–7), 689–716 (2009)CrossRefzbMATHGoogle Scholar
  71. 71.
    Reichel, L., Trefethen, L.: Eigenvalues and pseudo-eigenvalues of toeplitz matrices. Linear Algebra Appl. 162, 153–185 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23, 470–472 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Rosseel, E., Vandewalle, S.: Iterative solvers for the stochastic finite element method. SIAM J. Sci. Comput. 32(1), 372–397 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Rugh, W.J.: Nonlinear System Theory: The Volterra-Wiener Approach. Johns Hopkins University Press, Baltimore (1981)zbMATHGoogle Scholar
  76. 76.
    Sakamoto, S., Ghanem, R.: Simulation of multi-dimensional non-Gaussian non-stationary random fields. Probab. Eng. Mech. 17(2), 167–176 (2002)CrossRefGoogle Scholar
  77. 77.
    Sargsyan, K., Najm, H., Ghanem, R.: On the statistical calibration of physical models. Int. J. Chem. Kinet. 47(4), 246–276 (2015)CrossRefGoogle Scholar
  78. 78.
    Schoutens, W.: Stochastic Processes and Orthogonal Polynomials. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  79. 79.
    Segall, A., Kailath, T.: Orthogonal functionals of independent-increment processes. IEEE Trans. Inf. Theory IT-22(3), 287–298 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Shinozuka, M., Astill, J.: Random eigenvalue problem in structural mechanics. AIAA J. 10(4), 456–462 (1972)CrossRefzbMATHGoogle Scholar
  81. 81.
    Skorohod, A.V.: Random linear operators. Reidel publishing company, Dordrecht (1984)CrossRefGoogle Scholar
  82. 82.
    Sobczyk, K.: Wave Propagation in Random Media. Elsevier, Amsterdam (1985)zbMATHGoogle Scholar
  83. 83.
    Soize, C.: A nonparametric model of random uncertainties for reduced matrix models in structural dynamics. Probab. Eng. Mech. 15(3), 277–294 (2000)CrossRefGoogle Scholar
  84. 84.
    Soize, C., Ghanem, R.: Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26(2), 395–410 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Soize, C., Ghanem, R.: Reduced chaos decomposition with random coefficients of vector-valued random variables and random fields. Comput. Methods Appl. Mech. Eng. 198(21–26), 1926–1934 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    Soize, C., Ghanem, R.: Data-driven probability concentration and sampling on manifold. J. Comput. Phys. 321, 242–258 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    Soong, T.T., Bogdanoff, J.L.: On the natural frequencies of a disordered linear chain of n degrees of freedom. Int. J. Mech. Sci. 5, 237–265 (1963)CrossRefGoogle Scholar
  88. 88.
    Sousedik, B., Elman, H.: Stochastic Galerkin methods for the steady-state Navier-Stokes equations. J. Comput. Phys. 316, 435–452 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Sousedik, B., Ghanem, R.: Truncated hierarchical preconditioning for the stochastic Galerkin FEM. Int. J. Uncertain. Quantif. 4(4), 333–348 (2014)MathSciNetCrossRefGoogle Scholar
  90. 90.
    Sousedik, B., Ghanem, R., Phipps, E.: Hierarchical schur complement preconditioner for the stochastic Galerkin finite element methods. Numer. Linear Algebra Appl. 21(1), 136–151 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  91. 91.
    Steinwart, I., Scovel, C.: Mercer’s theorem on general domains: on the interaction between measures, kernels, and RKHSs. Constr. Approx. 35, 363–417 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    Stone, M.: The genralized Weierstrass approximation theorem. Math. Mag. 21(4), 167–184 (1948)MathSciNetCrossRefGoogle Scholar
  93. 93.
    Takemura, A., Takeuchi, K.: Some results on univariate and multivariate Cornish-Fisher expansion: algebraic properties and validity. Sankhy\(\breve{a}\) 50, 111–136 (1988)Google Scholar
  94. 94.
    Tan, W., Guttman, I.: On the construction of multi-dimensional orthogonal polynomials. Metron 34, 37–54 (1976)MathSciNetzbMATHGoogle Scholar
  95. 95.
    Tavare, S., Balding, D., Griffiths, R., Donnelly, P.: Inferring coalescence times from dna sequence data. Genetics 145, 505–518 (1997)Google Scholar
  96. 96.
    Thimmisetty, C., Khodabakhshnejad, A., Jabbari, N., Aminzadeh, F., Ghanem, R., Rose, K., Disenhof, C., Bauer, J.: Multiscale stochastic representation in high-dimensional data using Gaussian processes with implicit diffusion metrics. In: Ravela, S., Sandu, A. (eds.) Dynamic Data-Driven Environmental Systems Science. Lecture Notes in Computer Science, vol. 8964. Springer (2015). doi:10.1007/978–3–319–25138–7_15Google Scholar
  97. 97.
    Tipireddy, R.: Stochastic Galerkin projections: solvers, basis adaptation and multiscale modeling and reduction. PhD thesis, University of Southern California (2013)Google Scholar
  98. 98.
    Tipireddy, R., Ghanem, R.: Basis adaptation in homogeneous chaos spaces. J. Comput. Phys. 259, 304–317 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  99. 99.
    Tsilifis, P., Ghanem, R.: Reduced Wiener chaos representation of random fields via basis adaptation and projection. J. Comput. Phys. (2016, submitted)Google Scholar
  100. 100.
    Volterra, V.: Theory of Functionals and of Integral and Integro-Differential Equations. Blackie & Son, Ltd., Glasgow (1930)zbMATHGoogle Scholar
  101. 101.
    Wan, X., Karniadakis, G.: Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28(3), 901–928 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  102. 102.
    Wiener, N.: Differential space. J. Math. Phys. 2, 131–174 (1923)CrossRefGoogle Scholar
  103. 103.
    Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)MathSciNetCrossRefzbMATHGoogle Scholar
  104. 104.
    Wintner, A., Wiener, N.: The discrete chaos. Am. J. Math. 65, 279–298 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  105. 105.
    Xiu, D., Karniadakis, G.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  106. 106.
    Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  107. 107.
    Yamazaki, F., Shinozuka, M., Dasgupta, G.: Neumann expansion for stochastic finite-element analysis. ASCE J. Eng. Mech. 114(8), 1335–1354 (1988)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Engineering Sciences CenterSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations