Skip to main content

Backend Systems for ADAS

  • Reference work entry
  • First Online:
  • 13k Accesses

Abstract

Nowadays, a wide variety of in-vehicle services connect to a backend system via Internet. The key is to deliver information to the vehicle that is not locally available but accessible via Internet. For example, systems such as Google Traffic use fleet data to analyze the current traffic situation. This chapter gives an overview of available technologies for transmitting, storing, and analyzing data in a backend system. Based on simulation and measurement methods, we investigated the time required for transmitting data via cellular networks. The estimated transmission time is about 400 ms, whereby it can increase to 1 s, depending on the traffic situation and the condition of the cellular network. The transmitted data are then available in the backend system for further analysis. The technological background of the methods used for data storage and analysis is introduced by an example of a minimalistic programming for a local danger warning database system. The example of extracting parameters in intersections to support driver assistance systems illustrates how relevant information can be generated from fleet data. Hence, these data allow an enhancement of as yet prototypically developed driver assistance systems and enable the development of new systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aji A, Sun X, Vo H, Liu Q, Lee R, Zhang X, Wang F (2013) Demonstration of Hadoop-GIS. ACM Press, New York

    Book  Google Scholar 

  • Bartsch A, Klanner F, Lottermann C, Kleinsteuber M (2012) Latenz-Eigenschaften prototypischer Datenverbindungen zwischen Fahrzeugen über Backend (Latency properties of prototypic data connections between vehicles over a backend). Forschungspraxis, TUM Lehrstuhl für Medientechnik, München

    Google Scholar 

  • Bill R (2010) Grundlagen der Geo-Informationssysteme (Basics of geo-information systems). Wichmann, Heidelberg

    Google Scholar 

  • Blervaque V, Mezger K, Beuk L, Loewenau J (2006) ADAS Horizon – how digital maps can contribute to road safety. In: Valldorf J, Gessner W (eds) Advanced microsystems for automotive applications 2006. Springer, Berlin, pp 427–436

    Chapter  Google Scholar 

  • Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE (2006) Bigtable: a distributed storage system for structured data. USENIX Association

    Google Scholar 

  • Chen Q, Wang L, Shang Z (2008) MRGIS: a MapReduce-enabled high performance workflow system for GIS. In: 2008 I.E. fourth international conference on eScience. IEEE

    Google Scholar 

  • Dean J, Ghemewat S (2004) MapReduce: simplified data processing on large clusters. USENIX Association

    Google Scholar 

  • Eldawy A, Mokbel MF (2013) A demonstration of SpatialHadoop: an efficient mapreduce framework for spatial data. In: Proceedings of the VLDB Endowment

    Google Scholar 

  • Ghemawat S, Gobioff H, Leung S (2003) The Google file system. ACM Press, New York

    Book  Google Scholar 

  • Klanner F, Ruhhammer C, Bartsch A, Rasshofer R, Huber W, Rauch S (2013) Mehr Komfort und Sicherheit durch zunehmende Vernetzung (More comfort and safety through increasing connectivity). WEKA FACHMEDIEN GmbH, Elektronik automotive 6/7.2013

    Google Scholar 

  • Lottermann C, Botsov M, Fertl P, Müllner R (2012) Performance evaluation of automotive off-board applications in LTE deployments. In: 2012 I.E. vehicular networking conference (VNC 2012), Seoul, pp 211–218

    Google Scholar 

  • Obe R, Hsu L (2011) PostGIS in action. Manning Publications, Shelter Island

    Google Scholar 

  • Ruhhammer C, Atanasov A, Klanner F, Stiller C (2014a) Crowdsourcing als Enabler für verbesserte Assistenzsysteme: Ein generischer Ansatz zum Erlernen von Kreuzungsparametern (Crowdsourcing as an enabler to improve driver assistance systems: a generic approach to learn parameters of intersections). In 9. Workshop Fahrerassistenzsysteme: FAS2014, Walting. Uni-DAS e.V

    Google Scholar 

  • Ruhhammer C, Hirsenkorn N, Klanner F, Stiller C (2014b) Crowdsourced intersection parameters: a generic approach for extraction and confidence estimation. IEEE intelligent vehicles symposium

    Google Scholar 

  • White T (2009) Hadoop: the definitive guide. O’Reilly Media, Sebastopol

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Klanner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Klanner, F., Ruhhammer, C. (2016). Backend Systems for ADAS. In: Winner, H., Hakuli, S., Lotz, F., Singer, C. (eds) Handbook of Driver Assistance Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-12352-3_29

Download citation

Publish with us

Policies and ethics