Skip to main content

Data Fusion for Precise Localization

  • Reference work entry
  • First Online:
Handbook of Driver Assistance Systems

Abstract

In current vehicles, redundant sensors with heterogeneous measurement principles are applied in increasing numbers. Taking the advantage of these already existing redundancies, the concept of a central virtual sensor for the estimation of kinematic vehicle properties is created, based on a set of close-to-series sensors, consisting of a MEMS inertial measurement unit, a GPS receiver, and odometry sensors. Furthermore, a real-time capable implementation of this architecture is realized, using a linearized Error-State-Space Kalman filter. This fusion filter is enhanced by a correction algorithm for measurement latencies of multiple sensors and a two-step plausibilization of raw measurement data. In addition, an integrated assessment of the data quality is implemented. It describes data consistency using an integrity measure and data accuracy with a virtual datasheet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelghani M, Friswell M (2001) A parity space approach to sensor validation. IMAC XIX – 19th International Modal Analysis Conference, Orlando, USA

    Google Scholar 

  • Abuhashim T, Abdel-Hafez M, Al-Jarrah M (2010) Building a robust integrity monitoring algorithm for a low cost GPS-aided-INS system. Int J Control Autom Syst 8:1108–1122, Bucheon, Korea

    Article  Google Scholar 

  • Agogino A, Chao S, Goebel K, Alag S, Cammon B, Wang J (1988) Intelligent diagnosis based on validated and fused data for reliability and safety enhancement of automated vehicles in an IVHS. Institute of Transportation Studies, University of California, Berkeley, California PATH Research Report UCB-ITS-PRR-98-17

    Google Scholar 

  • Bar-Shalom Y, Rong Li X, Kirubarajan T (2001) Estimation with applications to tracking and navigation. Wiley, New York

    Book  Google Scholar 

  • Bevley D, Cobb S (2010) GNSS for vehicle control. Artech House, Norwood

    Google Scholar 

  • Bhatti U (2007) Improved integrity algorithms for integrated GPS/INS systems in the presence of slowly growing errors. Dissertation, Centre for Transport Studies, Department of Civil and Environmental Engineering, Imperial College London, London

    Google Scholar 

  • Bhatti U, Ochieng W (2009) Detecting multiple failures in GPS/INS integrated system: a novel architecture for integrity monitoring. J Glob Positioning Syst 8(1):26–42, Calgary, Alberta, Canada

    Article  Google Scholar 

  • Brown R (1992) A baseline RAIM scheme and a note on the equivalence of three RAIM methods. Proceedings of the 1992 National Technical Meeting of The Institute of Navigation, San Diego, p. 127–137

    Google Scholar 

  • Continental (2014) homepage (M2xPro): http://www.conti-online.com/www/automotive_de_de/themes/passenger_cars/chassis_safety/passive_safety_sensorics/sensor_sensorsystem_de/m2xpro_de.html (English version: http://www.conti-online.com/www/automotive_de_en/themes/passenger_cars/chassis_safety/passive_safety_sensorics/sensor_sensor_system_en/m2xpro_en.html), Accessed Feb 2015

  • Dang T, Hoffmann C, Stiller C (2005) Visuelle mobile Wahrnehmung durch Fusion von Disparität und Verschiebung (Visual mobile perception by fusion of disparity and displacement). In: Maurer M, Stiller C (eds) Fahrerassistenzsysteme mit maschineller Wahrnehmung (Driver assistance systems with machine perception). Springer, Berlin

    Google Scholar 

  • Deutsches Institut für Normung (1994) DIN70000 – Straßenfahrzeuge; Fahrzeugdynamik und Fahrverhalten (German Institute for Standardization (1994) DIN70000 – Road vehicles, vehicle dynamics and driving behaviour). Beuth Verlag, Berlin, Section 1.2

    Google Scholar 

  • Diesel J, Luu S (1995) Calculation of thresholds and protection radius using chi-square methods. Proceedings of the 8th International Technical Meeting of the Satellite Division of The Institute of Navigation, Palm Springs

    Google Scholar 

  • Ding J, Wesley Hines J, Rasmussen B (2004) Independent component analysis for redundant sensor validation. The University of Tennessee, Nuclear Engineering Department, Knoxville

    Google Scholar 

  • Dziubek N (2013) Zeitkorrigiertes Sensorsystem (Time-corrected sensor system). Continental Teves AG & Co. oHG, Patent WO 2013/037850 A1

    Google Scholar 

  • Dziubek N (2013) Verfahren zum Auswählen eines Satelliten (Method for selecting a satellite). Continental Teves AG & Co. oHG, Patent WO 2013/037844 A3

    Google Scholar 

  • Dziubek N, Martin J (2013) Sensorsystem umfassend ein Fusionsfilter zur gemeinsamen Signalverarbeitung (Sensor system comprising a fusion filter for common signal processing). Continental Teves AG & Co. oHG, Patent WO 2013/037854 A1

    Google Scholar 

  • Feng S, Ochieng W (2007) Integrity of navigation system for road transport. Centre for Transport Studies, Imperial College London, London

    Google Scholar 

  • Goebel K, Agogino A (1999) Fuzzy sensor fusion for gas turbine power plants. Proceedings of SPIE, Sensor Fusion: Architecture, Algorithms, and Applications III, Vol. 3719, Orlando, pp 52–61

    Google Scholar 

  • Grewe R, Hohm A, Hegemann S, Lueke S, Winner H (2012) Towards a generic and efficient environment model for ADAS. Intelligent Vehicles Symposium, Alcalá de Henares

    Google Scholar 

  • Gross-Bölting M, Kolkmann D (2002) Verfahren zum Abgleich eines Systems zum Messen der Gierrate eines Kraftfahrzeuges sowie ein solches System (Compensation method for a vehicle yaw rate measuring system as well as said system). Hella KGaA Hueck & Co., Patent EP 1 264 749 B1

    Google Scholar 

  • Groves P (2008) Principles of GNSS, inertial and multisensor integrated navigation systems. Artech House, Boston, Sections 12.1.3, 12.1.5

    MATH  Google Scholar 

  • Hackenberg U, Heißing B (1982) Die fahrdynamischen Leistungen des Fahrer-Fahrzeug-Systems im Straßenverkehr (Driving-dynamic performances of the vehicle-driver-system in public road traffic) Automobiltechnische Zeitung (ATZ), Nr. 84, Wiesbaden, Table 1

    Google Scholar 

  • Hofmann-Wellenhof B, Legat K, Wieser M (2003) Principles of positioning and guidance. Springer, Vienna, Section 9.3.1

    Google Scholar 

  • Hwang P, Brown R (2005) NIORAIM integrity monitoring performance in simultaneous two-fault satellite scenarios. ION GNSS 18th International Meeting of the Satellite Division, Long Beach

    Google Scholar 

  • Keller F, Lüder J, Urban W, Winner H (2002) Verfahren und Vorrichtung für die Bestimmung von Offsetwerten durch ein Histogrammverfahren (Method and apparatus for determining offset-values using a histogram). Robert Bosch GmbH, Patent DE 000010205971 A1

    Google Scholar 

  • Keller F, Lüder J, Urban W, Winner H (2002) Verfahren und Vorrichtung für die Bestimmung von Offsetwerten durch ein Regressionsverfahren (Method and device for determining an offset value using a regression method). Robert Bosch GmbH, Patent DE 000010206016 A1

    Google Scholar 

  • Kuusniemi H (2005) User-Level Reliability and Quality Monitoring in Satellite-Based Personal Navigation. Dissertation, Tampere University of Technology, Tampere

    Google Scholar 

  • Lategahn H (2013) Mapping and Localization in Urban Environments Using Cameras. Dissertation, Institut für Mess- und Regelungstechnik, Karlsruher Institut für Technologie (KIT), Karlsruhe

    Google Scholar 

  • Le Marchand O, Bonnifait P, Ibañez-Guzmán J, Bétaille D (2009) Vehicle localization integrity based on trajectory monitoring. Intelligent Robots and Systems, St. Louis

    Book  Google Scholar 

  • Leinen S (2009) Parameterschätzung I Vorlesungsskript (Parameter estimation I lecture notes). Institut für Physikalische Geodäsie der TU Darmstadt (now: Fachgebiet Physikalische Geodäsie und Satellitengeodäsie – Institute of Physical and Satellite Geodesy), Darmstadt, Section 5.1.2

    Google Scholar 

  • Mansfeld W (2010) Satellitenortung und Navigation (Satellite-based localization and navigation), 3rd edn. Vieweg + Teubner, Wiesbaden

    Google Scholar 

  • Niebuhr J, Lindner G (2002) Physikalische Messtechnik mit Sensoren (Physical measurement technology with sensors), 5th edn. Oldenbourg Industrieverlag, Munich, Section 1.2.2

    Google Scholar 

  • Pacejka H, Bakker E (1993) The magic formula tyre model. Tyre models for vehicle dynamics analysis. Delft, The Netherlands

    Google Scholar 

  • Pourret O, Naim P, Marcot B (2008) Bayesian networks: a practical guide to applications. Wiley, West Sussex

    Book  Google Scholar 

  • Pullen S (2008) Quantifying the performance of navigation systems and standards for assisted-GNSS. InsideGNSS, Oregon, Sept/Oct 2008

    Google Scholar 

  • Reif K (2007) Automobilelektronik (Automotive electronics), 2nd edn. Vieweg Verlag, Wiesbaden, Sections 4.6.4, 4.6.5, 4.6.8

    Google Scholar 

  • Steinhardt N (2014) Eine Architektur zur Schätzung kinematischer Fahrzeuggrößen mit integrierter Qualitätsbewertung durch Sensordatenfusion (An Architecture for the Estimation of Kinematic Vehicle Properties with Integrated Quality Assessment by Sensor Data Fusion). Thesis submitted to Fachbereich Maschinenbau, Technischen Universität Darmstadt, 01.04.2014

    Google Scholar 

  • Strang T, Schubert F, Thölert S, Oberweis R et al (2008) Lokalisierungsverfahren (Localization methods). Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR). Institut für Kommunikation und Navigation, Oberpfaffenhofen

    Google Scholar 

  • Sukkarieh S, Nebot E, Durrant-Whyte H (1999) A high integrity IMU/GPS navigation loop for autonomous land vehicle applications. IEEE Trans Robot Autom 15(3):572–578, New York

    Google Scholar 

  • Thrun S, Burgard W, Fox D (2006) Probabilistic robotics. The MIT Press, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Titterton D, Weston J (2004) Strapdown inertial navigation technology, 2nd edn. The Institution of Electrical Engineers, Stevenage, Section 3.5

    Book  Google Scholar 

  • Toledo-Moreo R, Zamora-Izquierdo M, Úbeda-Miñarro B, Gómez-Skarmeta A (2007) High-integrity IMM-EKF-based road vehicle navigation with low-cost GPS/SBAS/INS. IEEE Trans Intell Transp Syst 8(3):491–511, New York

    Google Scholar 

  • Wegener M, Schnieder E (2013) Definition der Messqualität und ihre quantitative Bestimmung (Definition of measurement quality and its quantitative determination). Deutsche Gesellschaft für Ortung und Navigation (DGON), POSNAV ITS, Berlin

    Google Scholar 

  • Wendel J (2007) Integrierte Navigationssysteme. Sensordatenfusion, GPS und Inertiale Navigation (Integrated navigation systems. Sensor data fusion, GPS and inertial navigation). Oldenbourg Wissenschaftsverlag, Munich

    Book  Google Scholar 

  • Winner H et al (2009) Handbuch Fahrerassistenzsysteme (Handbook of Driver Assistance Systems). Vieweg + Teubner, Wiesbaden, Sections 12 and 13

    Book  Google Scholar 

  • Wu X, Wu S, Wang J (2008) A fast integrity algorithm for the ultra-tight coupled GPS/INS System. 9th International Conference on Signal Processing, Beijing

    Google Scholar 

  • Young R, McGraw G (2003) Fault detection and exclusion using normalized solution separation and residual monitoring methods. NAVIGATION. J Inst Navig 50(3):151–170, Manassas, USA

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Steinhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Steinhardt, N., Leinen, S. (2016). Data Fusion for Precise Localization. In: Winner, H., Hakuli, S., Lotz, F., Singer, C. (eds) Handbook of Driver Assistance Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-12352-3_26

Download citation

Publish with us

Policies and ethics