Skip to main content

Plasma Radiation Transport

  • Living reference work entry
  • First Online:
  • 839 Accesses

Abstract

Radiative energy transfer is one of the principal properties of gases under plasma conditions. It is a direct consequence of the excitation to higher energy states of the elementary particles in a plasma and their return to lower energy states, or the ground state, by emission of radiation over a wide range of the spectrum. In this chapter, following a general definition of general concepts of blackbody and gaseous radiation, a review is presented of the radiation emission and absorption in plasmas. This includes line and continuum radiation, total effective radiation of plasmas, and thermal plasma radiation modeling. Examples are given of the contribution of line and continuum emission to the total volumetric emission of argon and nitrogen at atmospheric pressure as function of temperature. This is followed by an introduction to the concept of effective or net emission coefficient (NEC) as a means of taking into account self-absorption in plasmas. This is followed by a discussion of mixing rules for complex plasma gas mixtures. Examples are given of the total volumetric emission coefficients of gases such as argon, nitrogen, hydrogen, helium, air, water vapor, and their mixtures at atmospheric pressure over the temperature range from 5000 to 25,000 K. The effect of the presence of metal vapors such as copper and iron in the plasma gases is discussed. Data are provided for different metal vapor concentrations ranging from a few percentage points up to pure metal vapor plasmas. A brief discussion is presented of blackbody radiation of high temperature, of high-pressure plasmas, and of two-temperature nonequilibrium plasmas.

This is a preview of subscription content, log in via an institution.

Abbreviations

2T:

Two-temperature, also NLTE

GMAW:

Gas-metal arc welding

LTE:

Local thermodynamic equilibrium

NEC:

Net emission coefficient

Non-LCE:

Nonlocal chemical equilibrium

Non-LTE:

Nonlocal thermodynamic equilibrium

References

  • Aubrecht V, Lowke JJ (1994) Calculations of radiation transfer in SF6 plasmas using the method of partial characteristics. J Phys D Appl Phys 27(10):2066

    Article  Google Scholar 

  • Aubrecht V, Bartlova M, Coufal O (2010) Radiative emission from air thermal plasmas with vapour of Cu or W. J Phys D Appl Phys 43:434007

    Article  Google Scholar 

  • Barfield WD (1977) Theoretical study of equilibrium nitrogen plasma radiation. J Quant Spectrosc Radiat Transf 17(4):471–482

    Article  Google Scholar 

  • Baronnet JM (1978) Contribution à l’étude spectroscopique des plasmas d’azote produits par un générateur à arc soufflé; application à la chimie des plasmas: synthèse des oxydes d’azote, State Thesis, Univ. of Limoges, France (in French)

    Google Scholar 

  • Bates DR (1962) Atomic and molecular processes. Academic, New York/London

    Google Scholar 

  • Bayard S (1974) Contribution au calcul des fonctions de partition des plasmas azote-silicium-aluminium et determination des temperatures à partir du fond continu de l’azote, PhD, Univ. of Limoges, France (in French)

    Google Scholar 

  • Becker HA, Liu F, Bindar Y (1998) A comparative study of radiative heat transfer modeling in gas-fired furnaces using the simple grey gas and the weighted sum of grey gasses models. Int J Heat Mass Transf 41:3357–3371

    Article  MATH  Google Scholar 

  • Boselli M, Colombo V, Ghedini E, Gherardi M, Rotundo F, Sanibondi P (2013) High-speed imaging investigation of transient phenomena impacting plasma arc cutting process optimization. J Phys D Appl Phys 46:224010 (10pp)

    Article  Google Scholar 

  • Boulos MI (1984) Thermodynamic and transport properties of argon, nitrogen and oxygen at atmospheric pressure over the temperature range 3000–20,000 K. Internal report, University of Sherbrooke, Canada

    Google Scholar 

  • Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas: fundamentals and applications, vol 1. Plenum Press, New York/London

    Book  Google Scholar 

  • Burgess A, Seaton MJ (1960) A general formula for the calculation of atomic photo-ionization cross sections. Mon Not R Astron Soc 120:121

    Article  MathSciNet  MATH  Google Scholar 

  • Cabannes F, Chapelle J (1971) Reactions under plasma conditions Chapter 7. In: Spectroscopic plasma diagnostic, vol 1. Wiley Interscience, New York

    Google Scholar 

  • Chauveau S, Deron C, Perrin M-Y, Rivière P, Soufiani A (2003) Radiative transfer in LTE air plasmas for temperatures up to 15,000 K. J Quant Spectrosc Radiat Transf 77:113–130

    Article  Google Scholar 

  • Cheng P (1966) Dynamics of a radiating gas with applications to flow over a wavy wall. AIAA J 4:238–245

    Article  Google Scholar 

  • Cressault Y, Gleizes A (2013) Thermal plasma properties for Ar–Al, Ar–Fe and Ar–Cu mixtures used in welding plasmas processes: I. Net emission coefficients at atmospheric pressure. J Phys D Appl Phys 46:415206 (16pp)

    Article  Google Scholar 

  • Cressault Y, Hannachi R, Teulet P, Gleizes A, Gonnet JP, Battandier JY (2008) Influence of metallic vapours on the properties of air thermal plasmas. Plasma Sources Sci Technol 17:035016

    Article  Google Scholar 

  • Cressault Y, Rouffet ME, Gleizes A, Meillot E (2010a) Net emission of Ar–H2–He thermal plasmas at atmospheric pressure. J Phys D Appl Phys 43:335204

    Article  Google Scholar 

  • Cressault Y, Gleizes A, Riquel G (2010b) Properties of air–aluminum thermal plasmas. J Phys D Appl Phys 45:265202

    Article  Google Scholar 

  • Cressault Y, Connord V, Hingana H, Teulet P, Gleizes A (2011) Transport properties of CF3I thermal plasmas mixed with CO2, air or N2 as an alternative to SF6 plasmas in high-voltage circuit breakers. J Phys D Appl Phys 44:495202

    Article  Google Scholar 

  • Deron C, Riviere P Perrin MY, Soufiani A (2004) In: 15th international conference on gas discharges and their applications (GD2004), vol 1, Toulouse, p. 145

    Google Scholar 

  • Dixon CM, Yan JD, Fang MTC (2004) A comparison of three radiation models for the calculation of nozzle arcs. J Phys D Appl Phys 37:3309–3318

    Article  Google Scholar 

  • Drawin AW, Emard F (1973) Optical escape factors for bound-bound and free-bound radiation from plasmas. I. Constant source function. Beiträge aus der Plasmaphysik 13(3):143–168

    Article  Google Scholar 

  • Evans DL, Tankin RS (1967) Measurement of emission and absorption of radiation by an argon, Plasma Phys Fluid 10:1137–1144

    Google Scholar 

  • Eby SD, Trépanier JY, Zhang XD (1998) Modeling radiative transfer in circuit-breaker arcs with the P-1 approximation. J Phys D Appl Phys 31(13):1578

    Article  Google Scholar 

  • Emmons MW (1967) Arc measurement of high temperature gas transport properties, Phys Fluids 10:1125–1136

    Google Scholar 

  • Erraki A (1999) Etude du transfert radiatif dans les plasmas thermiques: application au SF6 et au mélange Argon-Fer, PhD Thesis, University Paul Sabatier, Toulouse, France, no 3447 (in French)

    Google Scholar 

  • Ernst KA, Kopainsky JO, Maecker HH (1973) The energy transport, including emission and absorption, in N2-Arcs of different radii, IEEE Trans. Plasma Science 4:3–16

    Google Scholar 

  • Ehrich H, Kusch MJ, Naturforsch Z (1986) Experimentelle Untersuchungen zur Stark-Verbreiterung der Balmer-Linien H α und H β. A28:1794

    Google Scholar 

  • Essoltani A (1991) Etude du rayonnement émis par un plasma d’argon en presence de vapeur métallique, Thèse de Doctorat es Sciences Appliquées, Spécialité Génie Chimique, Univ. de Sherbrooke, Sherbrooke, Québec, (in French)

    Google Scholar 

  • Essoltani A, Proulx P, Boulos MI, Gleizes A (1990) Radiation and Self-Absorption in Argon-Iron Plasma at Atmospheric Pressure, J Anal Atom Spectrom 5:543–547

    Google Scholar 

  • Essoltani A, Proulx P, Boulos MI, Gleizes A (1994a) Effect of the presence of iron vapors on the volumetric emission of Ar/Fe and Ar/Fe/H2 plasmas. Plasma Chem Plasma Process 14:301–315

    Article  Google Scholar 

  • Essoltani A, Proulx P, Boulos MI, Gleizes A (1994b) Volumetric emission of argon plasmas in the presence of vapors of Fe, Si and Al. Plasma Chem Plasma Process 14:437–450

    Article  Google Scholar 

  • Fauchais P, Lapworth K, Baronnet JM (1974) First report on measurement of temperature and concentration of excited species in optically thin plasmas. In: Fauchais P (ed) IUPAC subcommittee on plasma chemistry. University of Limoges, Limoges

    Google Scholar 

  • Finkelnburg A, Peters T (1957) Kontinuierliche spektren, encyclopedia of physics, vol 28. Springer, Berlin, Spectroscopy II

    Google Scholar 

  • Gand M (1978) Relaxation d’un plasma d’helium créé par claquage rapide, PhD thesis, Univ. of Orleans, France (in French)

    Google Scholar 

  • Gaunt J (1923) Phil Mag 46:836

    Article  Google Scholar 

  • Gleizes A, Gonzalez JJ, Liani B, Rahmani B (1990) Calculation of net emission coefficient in Ar-Cu and SF6- Cu thermal plasmas. 51(C5):221–228

    Google Scholar 

  • Gleizes A, Rahmani B, Gonzalez JJ, Liani B (1991) Calculation of net emission coefficient in N2, SF6 and SF6-N2 arc plasmas. J Phys D Appl Phys 24:1300

    Article  Google Scholar 

  • Gleizes A, Gonzalez JJ, Razafinimanana M, Robert T (1992) Influence of radiation on temperature field calculation in SF6 arcs. Plasma Sources Sci Technol 1(2):135

    Article  Google Scholar 

  • Gleizes A, Gonzalez JJ, Liani B, Raynal G (1993) Calculation of the net emission coefficient of thermal plasmas in mixtures of gas with metallic vapor. J Phys D Appl Phys 26:1921–1927

    Article  Google Scholar 

  • Gleizes A, Gonzalez JJ, Freton P (2005) Thermal plasma modelling. Topical review. J Phys D Appl Phys 38:R153–R183

    Article  Google Scholar 

  • Gleizes A, Cressault Y, Teulet P (2010) Mixing rules for thermal plasma properties in mixtures of argon, air and metallic vapours. Plasma Sources Sci Technol 19:055013 (13pp)

    Article  Google Scholar 

  • Gleizes (2014) Private communication

    Google Scholar 

  • Griem H (1964) Plasma spectroscopy. McGraw-Hill, New York

    Google Scholar 

  • Griem H (1974) Spectral broadening by plasma. Academic, New York/London

    Google Scholar 

  • Griem HR (2005) Principles of plasma spectroscopy. Cambridge monographs on plasma physics. Paperback

    Google Scholar 

  • Hannachi R, Cressault Y, Teulet P, Ben Lakhdar Z, Gleizes A (2008) Net emission of H2O–air–MgCl2/CaCl2/NaCl thermal plasmas. J Phys D Appl Phys 41:205212 (12pp)

    Article  Google Scholar 

  • Hermann W, Schade E (1972) Radiative energy balance in cylindrical nitrogen arcs. J Quant Spectrosc Radiat Transf 12(9):1257–1282

    Article  Google Scholar 

  • Herzberg G (1944) Atomic spectra and atomic structure. Dover, New York

    Google Scholar 

  • Herzberg G (1969) Spectra of diatomic molecules. D. van Nostrand, New York

    Google Scholar 

  • Hill RA (1964) Tables of electron density as a function of the half-width of Stark-broadened hydrogen lines. J Quant Spectrosc RA 4(6):857–861

    Google Scholar 

  • Hill RA (1967) Fractional-intensity widths and Stark-broadening formulas for the hydrogen Balmer lines. J Quant Spectrosc Radiat Transf 7(3):401–410

    Article  Google Scholar 

  • Irons FE (1979) The escape factor in plasma spectroscopy – I. The escape factor defined and evaluated. J Quant Spectrosc Radiat Transf 22(1):1–20

    Article  MathSciNet  Google Scholar 

  • Jan C, Cressault Y, Gleizes A, Bousoltane K (2014) Calculation of radiative properties of SF6–C2F4 thermal plasmas – application to radiative transfer in high-voltage circuit breakers modelling. J Phys D Appl Phys 47:015204

    Article  Google Scholar 

  • Karsas WJ, Letter R (1961) Astrophys J Suppl Sci 6:167

    Article  Google Scholar 

  • Kramers HA (1923) Phil Mag 46:836

    Article  Google Scholar 

  • Krey RU, Morris JC (1970) Phys Fluids 13:1483

    Article  Google Scholar 

  • Kunze H-J (2009) Introduction to plasma spectroscopy. Series: springer series on atomic, optical, and plasma physics, vol 56

    Google Scholar 

  • Liebermann RW, Lowke JJ (1976) Radiation emission coefficients for sulfur hexafluoride arc plasmas. J Quant Spectrosc Radiat Transf 16(3):253–264

    Article  Google Scholar 

  • Lowke JJ (1974) Predictions of arc temperature profiles using approximate emission coefficients for radiation losses. J Quant Spectrosc Radiat Transf 14(2):111–122

    Article  Google Scholar 

  • Lowke JJ, Capriotti ER (1969) Calculation of temperature profiles of high pressure electric arcs using the diffusion approximation for radiation transfer. J Quant Spectrosc Radiat Transf 9(2):207–236

    Article  Google Scholar 

  • Menart J, Malik S (2002) Net emission coefficients for argon–iron thermal plasmas. J Phys D Appl Phys 35:867–874

    Article  Google Scholar 

  • Menart J, Heberlein J, Pfender E (1996) Theoretical radiative emission results for argon/copper thermal plasma. Plasma Chem Plasma Process 16(Suppl 1):S245–S265

    Google Scholar 

  • Mensing AE, Boedeker LR (1969) Theoretical investigations of RF induction heated plasmas. NASA-CR-1312. p75

    Google Scholar 

  • Menzel DH, Pekeris CL (1935) Absorption coefficients and hydrogen line intensities. Mon Not R Astron Soc 96:77

    MATH  Google Scholar 

  • Miller RC, Ayen RJ (1969) Temperature profiles and energy balances for an inductively coupled plasma torch. J Appl Phys 40:5260

    Article  Google Scholar 

  • Modest MF (2003) Radiative heat transfer, 3rd edn. Academic, Amsterdam, Science, 822 pages

    MATH  Google Scholar 

  • Morris JL, Yos JM (1971) Radiation studies of arc heated plasma, ARL 71–0317 AFCS-0390-41 CR

    Google Scholar 

  • Moscicki T, Hoffman J, Szymanski Z (2008) Net emission coefficients of low temperature thermal iron–helium plasma. Opt Appl 38:365–373

    Google Scholar 

  • Murphy AB (2010) The effects of metal vapor in arc welding. J Phys D Appl Phys 43:434001 (31pp)

    Article  Google Scholar 

  • Murphy AB (2013) Influence of metal vapor on arc temperatures in gas–metal arc welding: convection versus radiation. J Phys D Appl Phys 46:224004 (10pp)

    Article  Google Scholar 

  • Naghizadeh-Kashani Y, Cressault Y, Gleizes A (2002) Net emission coefficient of air thermal plasmas. J Phys D Appl Phys 35(22):2925

    Article  Google Scholar 

  • Neuberger AW (1973) AIAA Paper 73–744, delivered at AIAA 8th thermophysics conference, Palm Springs

    Google Scholar 

  • Nicolet NE, Shepard CE, Clark KJ, Balakushan A, Kesseling JP, Suchsland KE, Reese Jr JJ (1975) Analysis and design study for a high pressure, high enthalpy constricted arc heater. Rep. AEDC-TR 75–47

    Google Scholar 

  • Owano TG, Gordon MH, Kruger CH (1990) Measurements of the radiation source strength in argon at temperatures between 5000 and 10,000 K, Phys. Fluids. B2:3184–3190

    Google Scholar 

  • Peach G, Seaton MJ (1962) Continuous absorption coefficients for non-hydrogenic atoms. Mon Not R Astron Soc 124:371–381

    Article  Google Scholar 

  • Pecker-Wimel C (1967) Introduction à la spectroscopie des plasmas. Gordon and Breach, London

    Google Scholar 

  • Peyrou B, Chemartin L, Lalande P, Chéron BG, Rivière P, Perrin M-Y, Soufiani A (2012) Radiative properties and radiative transfer in high pressure thermal air plasmas. J Phys D Appl Phys 45:455203 (12pp)

    Article  Google Scholar 

  • Pfender E (1981) Diagnostic techniques, in continuing education: plasma technology and applications, 2nd world congress of chemical engineering and world chemical montreal

    Google Scholar 

  • Rahmani B (1989) Calcul de l’émission nette du rayonnement des arcs dans SF6 et dans les mélanges SF6-N2, Engineering PhD, Univ. of Toulouse, France, (in French)

    Google Scholar 

  • Randrianandraina HZ, Cressault Y, Gleizes A (2011) Improvements of radiative transfer calculation for SF6 thermal plasmas. J Phys D Appl Phys 44:194012

    Article  Google Scholar 

  • Raynal G, Vergne PJ, Gleizes A (1995) Radiative transfer in SF6 and SF6–Cu arcs. J Phys D Appl Phys 28:508–515

    Article  Google Scholar 

  • Riad H (1986) Calcul du transfert radiatif dans des arcs et des plasmas thermiques: application à l’hydrogène et au méthane, PhD Thesis University Paul Sabatier, Toulouse, France, no 2465 (in French)

    Google Scholar 

  • Riad H, Gonzalez JJ, Gleizes A (1995) Net emission coefficient for thermal plasmas in H2, C, H2O, CF4 and CH4, In: Proceedings of the 12th international symposium on plasma chemistry (ISPC-12), vol 3, Minneapolis, 21–25 Augt 1995, p. 1731

    Google Scholar 

  • Riad H, Cheddadi A, Naghizadeh-Kashani Y, Gleizes A (1998) Haigh Temp Mater Process 2:1–14

    Article  Google Scholar 

  • Sampson DH (1965) Radiative contribution to energy and momentum transport in gas. Interscience, New York

    Google Scholar 

  • Sevast’yanenko VG (1979) Radiation transfer in a real spectrum. Integration over frequency. J Eng Phys 36:138–148

    Article  Google Scholar 

  • Sevast’yanenko VG (1980) Radiation transfer in a real spectrum. Integration with respect to the frequency and angles. J Eng Phys 38:173–179

    Article  Google Scholar 

  • Siegel R, Howell JR (1981) Thermal radiation heat transfer. McGraw-Hill, New York

    Google Scholar 

  • Soon WH, Kunc JA (1991) Kinetics and continuum emission of negative atomic ions in partially ionized plasmas. Phys Rev A 43:723

    Article  Google Scholar 

  • Traving G (1995) In: Lochte-Holtgreven (ed) Plasma diagnostics, Chapter II. AIP press

    Google Scholar 

  • Weise WE, Kelleher PE, Helbig V (1975) Variations in Balmer-line stark profiles with atom-ion reduced mass. Phys Rev A11:1854

    Article  Google Scholar 

  • Wilbers ATM, Beulers JJ, Schram DC (1991) Radiative energy loss in a two temperature argon plasma, ISPC-10 Proceedings 10-1.1-4 (Eds.) U. Ehlemann et al., Univ. of Bochum, Germany

    Google Scholar 

  • Yabukov IT (1965) Optics Spectros C 19 P. 277

    Google Scholar 

  • Zhang JF, Fang MTC, Newland DB (1987) Theoretical investigation of a 2 kA DC nitrogen arc in a supersonic nozzle. J Phys D Appl Phys 20(3):368

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Nomenclature and Greek Symbols

A iul

Transition probability (s-1) for spontaneous emission.

Blu

Transition probability for absorption (m3/J.s2).

Bλ

Blackbody monochromatic radiation intensity (W/m3·ster).

Bv

Blackbody monochromatic radiation intensity (J/m4·ster).

Bul

Transition probability for induced emission (m3/J.s2).

b

Impact parameter.

c

Velocity of light (c = 2.998 × 108 m/s).

e

Charge of the electron (e = 1.60217 × 10−19 A.s or C).

E

Energy (J).

\( {\mathrm{E}}_{{\mathrm{H}}^{+}}^{\mathrm{l}} \)

Ionization energy of the hydrogen atom (\( {\mathrm{E}}_{{\mathrm{H}}^{+}}^{\mathrm{l}}=13.6\ \mathrm{eV} \)).

Ei,u

Energy of the excited state u of the chemical species i (eV).

\( {\mathrm{E}}_{{\mathrm{X}}^{+}}^{\mathrm{l}} \)

Ionization energy of the atom X (eV).

\( {\mathrm{E}}_{{\mathrm{X}}_{\mathrm{j}}} \)

Excited state of the atom X (eV).

Ev

Monochromatic radiation energy (eV).

F

Energy of the rotational excited state in (cm−1).

FRv

Monochromatic radiation flux.

G

Energy of the vibrational excited state expressed in (cm−1).

G1

Function accounting for the cylindrical geometry of the plasma.

G ni,z

Gaunt factor.

gu

Statistical weight or degeneracy.

gx

Statistical weight of the ground state of the negative ion.

H+

Total radiation flux in positive direction (W/m2).

H

Total radiation flux in negative direction (W/m2).

H0

Total flux (intensity emitted per unit surface per unit time into the half sphere) for a blackbody.

h

Planck’s constant (h = 6.6 × l0−34 W.s2).

Iν(θ, φ)

Monochromatic radiation intensity (refers to unit surface, unit time, and unit frequency) for the frequency v (J/m2 · ster).

Iλ(θ, φ)

Monochromatic radiation intensity for the wavelength λ, see Eq.(4) (W/m3·ster).

I(θ, φ)

Total directional radiation intensity, see Eq.(2) (W/m2 · ster).

I

Total radiation intensity (W/m2).

Iv

Monochromatic radiation intensity for the frequency, v (J/m2 · ster).

Iλ

Monochromatic radiation intensity for the wavelength, λ (J/m2 · ster).

J

Rotational quantum number.

JR

Total radiation flux.

Jυ

Mean radiation intensity (W/m3.ster).

k

Boltzmann constant (k = 6.610−34 J.s).

Kυ

Absorption coefficient (m−1).

K v

Absorption coefficient taking into account induced emission (m−1).

Azimuthal quantum number.

M

Atomic mass (kg).

me

Mass of the electron (kg).

Nu(t)

Population of excited state u (m−3).

n

Principal quantum number.

\( \overrightarrow{\mathrm{n}} \)

Surface normal.

ne

Electron density (m−3).

ni,u

Density of the excited state u of the chemical species i (m−3).

nr

Refractive index.

n n,ℓi,z

Density of the chemical species i;

n *

Effective quantum number.

p

Pressure (Pa).

\( \mathrm{P}\left(\mathrm{v}-{\mathrm{v}}_{\mathrm{o}}\right) \)

Shape factor of a spectral line (s).

\( \mathrm{P}\left(\uplambda -{\uplambda}_{\mathrm{o}}\right) \)

Shape factor of a spectral line (m−1).

Q eli,z

Electronic partition function of the chemical species i with electrical charge z.e.

r1

Bohr radius of the ground state (r1 = 5.3 × 10−11 m).

R

Radius of the elemental plasma control volume (m).

Sv

Source function: (\( {\mathrm{S}}_{\mathrm{v}}={\upvarepsilon}_{\mathrm{v}}/{\upkappa}_{\mathrm{v}}^{\prime }\ .{\mathrm{n}}_{\mathrm{r}} \)) (J/m2·ster).

S

Cross section (m2).

Te

Energy of the electronic excited state expressed in (cm−1).

t

Time (s).

u

Total radiation density (J/m3).

uv ( θ, φ)

Monochromatic radiation density (J.s/m3.ster).

u ov (T)

Blackbody monochromatic radiation density (J.s/m3.ster).

v

Vibrational quantum number.

\( \overline{\mathrm{v}} \)

Mean velocity of an atom or an ion (m/s).

ve

Velocity of the electron (m/s).

α

Constant of fine structure (2πe2/hc)

δe,i

Stark width at half the maximum intensity (nm).

\( {\updelta}_{{\mathrm{E}}_{{\mathrm{X}}^{+}}} \)

Lowering of ionization energy of the atom X (eV).

δλ

Width of the spectral line (nm).

δD

Doppler width at half the maximum intensity (nm).

ΔJ

Difference in rotational quantum numbers related, respectively, to the upper ′ and lower ″ states \( \Delta \mathrm{J}={\mathrm{J}}^{\prime }-{\mathrm{J}}^{{\prime\prime} } \).

Δv

Difference in vibrational quantum numbers related, respectively, to the upper and lower ″ states \( \Delta \mathrm{v}={\mathrm{v}}^{\prime }-{\mathrm{v}}^{{\prime\prime} } \).

εE

Effective emission coefficient (W/m3·ster).

εfb(υ)

Emission coefficient for free–bound transition (J/m3·ster).

εff(υ)

Emission coefficient for free–free transition (J/m3·ster).

ε e. iff (υ)

Emission coefficient for free–free transitions due to the field of ions (J/m3·ster).

εLo)

Integrated volumetric emission coefficient of a spectral line centered on the wavelength λo (W/m4·ster).

εLo)

Integrated volumetric emission coefficient of a spectral line centered on the frequency vo (W/m3·ster).

ε e,aff

Emission coefficient for the free–free transitions due to elastic collisions.

\( {\upvarepsilon}_{\mathrm{i},\mathrm{z}+1}^{\mathrm{n},\ell } \)

Emission coefficient of particles of chemical species i with electrical charge z.e; the excited state is defined by the quantum numbers n and ℓ.

εN

Net emission coefficient see Eq.(131) (W/m3·ster).

εT

Total emission coefficient (W/m3·ster).

ελ

Monochromatic emission coefficient (W/m4·ster).

ευ

Emission coefficient (J/m3·ster).

\( {\upzeta}_{\mathrm{i},\mathrm{z}}\left(\upupsilon, \mathrm{T}\right) \)

Biberman factor.

θ

Angle with respect to the surface normal \( \overrightarrow{\mathrm{n}} \)

κυ

Monochromatic absorption coefficient including induced emission \( \left({\upkappa}_{\uplambda}^{\prime }={\upkappa}_{\upupsilon}^{\prime}\right) \) (cm−1).

κ υ

Monochromatic absorption coefficient per unit length without induced emission (cm−1).

\( {\upkappa}_{\mathrm{i},\mathrm{z}+1} \)

Absorption coefficient for a particle of species i and electrical charge z (z = 0 for an atom, z = l for its first ion) (cm−1).

λ

Wavelength (nm).

λmax

Wavelength giving the maximum value of Bv at a given temperature.

Λ

Escape factor.

υ

Radiation frequency.

σu,ℓ

Wave number for the transition between the state u and the state ℓ (m-l).

σ n,ℓi,z

Cross section for photoionization (m2).

σ n,ℓi,z,class

Classical photoionization cross section (m2).

τs

Perturbation time resulting from the motion of a charged particle (s).

τu,ℓ

Lifetime of the excited state u (s).

τυ

Optical depth (dimensionless).

φ

Azimuthal angle with respect to the normal \( \overrightarrow{\mathrm{n}} \)

Ω

Solid angle.

Upper energy level

Lower energy level

Azimuthal quantum number

n

Principal quantum number

I

Chemical species i

Lower excited state

u

Upper excited state

z

Electrical charge of the particle

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Boulos, M.I., Fauchais, P.L., Pfender, E. (2015). Plasma Radiation Transport. In: Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-319-12183-3_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12183-3_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-12183-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics