Skip to main content

Kinetic Theory of Gases

  • Living reference work entry
  • First Online:
Handbook of Thermal Plasmas

Abstract

This chapter deals with the fundamentals of the kinetic theory of gases and the basic mechanism behind transport phenomena under plasma conditions. A brief introduction of particles and collisions is presented introducing the concepts of collision cross section and frequencies. This is followed by elementary processes for elastic and inelastic collisions, including excitation and ionization mechanisms. The concept of distribution functions and reaction rates for binary and three-body recombination is also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bittencourt JA (2004) Fundamentals of plasma physics. Springer, p 678

    Google Scholar 

  • Brown SC (1959) Basic data of plasma physics. MIT Press, Cambridge, MA

    Google Scholar 

  • Delcroix JL (1966) Physique des Plasmas, vol 1 and 2. Monographies, Dunod, Paris

    Google Scholar 

  • Fowler G (1956) Statistical thermodynamics. U.K. Press, Cambridge

    Google Scholar 

  • Francis G (1960) Ionization phenomena in gases. Butterworth, London

    Google Scholar 

  • Gould H, Tobochnik J (2010) Statistical and thermal physics. Princeton Univeristy Press, Princeton

    Google Scholar 

  • Hirschfelder JD (1954) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  • Landau L, Lifshitz E (1967) Physique statistique. MIR, Moscow

    Google Scholar 

  • Massey HSW (1971) Electronic and ionic impact phenomena. Slow collisions of heavy particles. Clarendon, Oxford

    Google Scholar 

  • Massey HSW, Burhop EHS (1969) Electronic and ionic impact phenomena. Collisions of electrons with atoms. Clarendon, Oxford

    Google Scholar 

  • Massey HSW, Gilbody HB (1974) Electronic and ionie impact phenomena. Recombination and fast collisions of heavy particles. Clarendon, Oxford

    Google Scholar 

  • Mayer JE, Mayer GM (1940) Statistical mechanics. Wiley, New York

    Google Scholar 

  • McDaniel EW (1964) Collision phenomena in ionized gases. Wiley, New York

    Google Scholar 

  • Mitchner M, Kruger CH Jr (1973) Partially ionized gases. Wiley, New York

    Google Scholar 

  • Munster A (1969) Statistical thermodynamics, vol 1. Springer/Academic, New York/Berlin

    Google Scholar 

  • Present RD (1958) Kinetic theory of gases. McGraw-Hill, New York

    Google Scholar 

  • Reif F (1988) Fundamentals of statistical and thermal physics. McGraw-Hill, New York

    Google Scholar 

  • Von Engel A (1965) Ionized gases. Clarendon, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Nomenclature and Greek Symbols

A

Surface (m2)

c

Velocity of light (c = 2.998 × 108 m/s)

Cij

Net rate of increase of particles in the control volume due to collisions

\( \overrightarrow{\mathrm{c}} \)

Center-of-mass velocity of two particles (m/s)

dA

Elementary surface (m2)

dN(v)

Number of particles with velocities between v and v+dv

e

Electron charge (e = 1.602 × 10−19C)

E

Electric field (V/m)

Eb

Binding energy of the molecular ion

Ei

Energy of the excited level i (EV or cm−1)

Eion

Ionization energy of an atom (eV)

Em

Energy of a metastable state (eV)

Es

Threshold energy (eV)

E*

Energy of an excited state (eV)

f°(v)

Maxwellian distribution function

\( \mathrm{f}\left(\overrightarrow{\mathrm{r}},\overrightarrow{\mathrm{v}},\mathrm{t}\right) \)

Velocity distribution function at time t at the tip of the position vector \( \overrightarrow{\mathrm{r}} \)

\( {\mathrm{f}}_{\mathrm{n}}\left(\overrightarrow{\mathrm{r}},\overrightarrow{\mathrm{v}},\mathrm{t}\right) \)

Normalized distribution function

Fi

Incident flux of particles i (m−2·s−1)

\( {\mathrm{F}}_{\mathrm{n}}^{+} \)

Flux per unit time and unit surface carried to the (+) side of a surface defined by its normal \( \overrightarrow{\mathrm{n}} \) and moving with the gas velocity \( {\overrightarrow{\mathrm{v}}}_{\mathrm{y}} \)

\( {\mathrm{F}}_{\mathrm{n}}^{-} \)

Flux per unit time and unit surface carried to the (-) side of a surface defined by its normal \( \overrightarrow{\mathrm{n}} \) and moving with the gas velocity \( {\overrightarrow{\mathrm{v}}}_{\mathrm{y}} \)

h

Planck’s constant (h = 6.626 × 10−34 J·s, or kg·m2/s)

J

Associated quantum number

\( \overrightarrow{\mathrm{J}} \)

Total angular momentum \( \left(\overrightarrow{\mathrm{J}},=,{\sum}_{\mathrm{i}},{\overrightarrow{\mathrm{J}}}_{ \mathrm{i}}\right) \)

k

Boltzmann’s constant (k = 1.38 × 10−23 J/K)

\( {\overline{\mathrm{k}}}_{12}\left({\overrightarrow{\mathrm{v}}}_{12}\right) \)

Mean direct binary collision rate or reaction rate (m3/s)

\( \overline{\mathrm{k}}\left({\overrightarrow{\mathrm{v}}}_1,{\overrightarrow{\mathrm{v}}}_2,{\overrightarrow{\mathrm{v}}}_3\right) \)

Mean direct three-body collision rate (m6/s)

K

Fraction of energy transferred by elastic collision from one particle of mass m to another of mass M averaged over all angles

â„“

Mean free path (m)

â„“i

Mean free path of particles of type i in a mixture of different chemical species (m)

â„“ij

Mean free path traversed by a particle of type i between two successive collisions with particles of type j (m)

â„“

As index, lower energy level

L

Distance between electrodes (m)

m

Mass of a particle (kg)

mH

Mass of hydrogen atom \( \left(\frac{{\mathrm{m}}_{\mathrm{H}}}{{\mathrm{m}}_{\mathrm{e}}},=,1856\right) \)

mi

Mass of the species i (kg)

M

Mass of a particle (kg)

n

Principal quantum number

\( \overrightarrow{\mathrm{n}} \)

Normal to a surface dA

ni

Number density of particles of chemical species i (m−3)

p

Absolute value of momentum

\( \overrightarrow{\mathrm{p}} \)

Momentum vector

pij(Vij, θ, φ)

Proportionality factor defining the differential cross section

P(x)

Probability of a free path to exceed a distance x (m)

P(t)

Probability that a particle with relative velocity \( \left(\overrightarrow{\mathrm{V}}={\overrightarrow{\mathrm{v}}}_1-{\overrightarrow{\mathrm{v}}}_2\right) \) survives a time t without suffering a collision

P*(t).dt

Probability that a particle, after surviving without collisions for a time t, suffers a collision in the time interval between t and t + dt

Qi

Total effective cross section for collision processes of particle i with particles j (m−1)

Q

Total effective cross section \( \left(\mathrm{Q},=,{\displaystyle \sum_{\mathrm{i}}},{\mathrm{Q}}_{\mathrm{i}}\right) \)

u

As index, upper energy level

\( \overrightarrow{\mathrm{U}} \)

Peculiar velocity of a particle \( \left(\overrightarrow{\mathrm{U}}=\overrightarrow{\mathrm{v}}-{\overrightarrow{\mathrm{v}}}_{\mathrm{g}}\right) \) where \( \overrightarrow{\mathrm{v}} \) is the particle velocity and \( {\overrightarrow{\mathrm{v}}}_{\mathrm{g}} \) the gas velocity (m/s)

Un

Normal component of the peculiar velocity \( \left(\overrightarrow{\mathrm{U}}=\overrightarrow{\mathrm{v}}-{\overrightarrow{\mathrm{v}}}_{\mathrm{g}}\right) \) (m/s)

\( {\overrightarrow{\mathrm{r}}}_{ \mathrm{i}} \)

Position vector of particle i (m)

\( {\overrightarrow{\mathrm{r}}}_{ \mathrm{j}} \)

Position vector of particle j (m)

\( {\overrightarrow{\mathrm{R}}}_{ \mathrm{i}\mathrm{j}} \)

Relative position of particles i and j \( \left({\overrightarrow{\mathrm{R}}}_{ \mathrm{i}\mathrm{j}},=,{\overrightarrow{\mathrm{r}}}_{ \mathrm{i}},-,{\overrightarrow{\mathrm{r}}}_{ \mathrm{j}}\right) \)

T

Temperature (K)

v

Absolute value of the velocity (m/s)

vm

Most probable velocity (m/s)

\( \overline{\mathrm{v}} \)

Mean velocity (m/s)

\( \overline{{\mathrm{v}}^2} \)

Mean square of the effective velocity (m/s)

\( {\overrightarrow{\mathrm{v}}}_{\mathrm{i}} \)

Velocity vector of a particle of chemical species i (m/s)

\( {\overrightarrow{\mathrm{v}}}_{\mathrm{g}} \)

Mean velocity referred to as the species fluid (or average) velocity relative to some laboratory frame of reference (m/s)

\( \mathrm{V} \)

Relative velocity of particles of chemical species i and j before collision (m/s)

\( {\mathrm{V}}^{\prime } \)

Relative velocity of particles of chemical species i and j after collision (m/s)

\( {\overrightarrow{\mathrm{V}}}_{\mathrm{ij}} \)

Relative velocity vector of particles i and j before collision (m/s)

\( {\overrightarrow{\mathrm{V}}}_{\mathrm{ij}}^{\prime } \)

Relative velocity vector of particles i and j after collision (m/s)

\( {\overline{\mathrm{V}}}_{\mathrm{ij}} \)

Mean relative velocity of particles i and j (m/s)

w.dt

Probability that a particle suffers a collision between t and t + dt, also called collision rate

X

Designation for the chemical species in its ground state

X*

Designation for the chemical species in an excited state

Xm

Designation for the chemical species in a metastable state

X+

Designation for the chemical species in its first ionized state

X++

Designation for the chemical species in its second ionized state

X2

Designation for the molecule made of two X atoms in its ground state

\( {\mathrm{X}}_2^{+} \)

Designation for the ionized molecule

Y

Designation for the chemical species in its ground state

Z'

Number of protons in the nucleus

α

Recombination reaction rate coefficient (m3/s)

ΔE

Energy difference between two excited states (eV or cm−1)

ΔEtot

Total kinetic energy exchange during a collision (eV, J, cm−1)

ΔJ

Difference in the angular momentum of the atom between its initial and final states

ΔP

Change in angular momentum during collisions (ΔP = h·ΔJ)

θ

Angle in spherical coordinates

λi

Maximum incident wavelength for ionization by photons (nm)

Λ

Wavelength (nm)

σ

Wave number (m−1)

σ0

Total scattering cross section (m2)

σij

Differential scattering cross section (m2)

σimax

Maximum value of σ(m−1)

σ0(Vij)

Total scattering cross section (m2)

\( \upsigma \left({\overrightarrow{\mathrm{V}}}_{\mathrm{ij}},\uptheta, \upvarphi \right) \)

Differential scattering cross section (m2)

\( {\upsigma}_{\mathrm{ij}}\left({\overrightarrow{\mathrm{V}}}_{\mathrm{ij}},\uptheta, \upvarphi \right) \)

Differential scattering cross section (m2)

Ï„

Mean time between collisions also called relaxation time (s)

Ï„ij

Mean time between collisions of two particles of types i and j

Ï…

Frequency of the associated wave (s−1 or Hz)

Ï…ij

Collision frequency between two particles of types i and j (s−1)

φ

Azimuthal angle in spherical coordinates

\( \upchi \left(\overrightarrow{\mathrm{r}},\overrightarrow{\mathrm{v}},\mathrm{t}\right) \)

Particle properties in terms of position \( \overrightarrow{\mathrm{r}} \) and velocity \( \overrightarrow{\mathrm{v}} \) at time t

Ω

Solid angle (ster.)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Boulos, M.I., Fauchais, P., Pfender, E. (2015). Kinetic Theory of Gases. In: Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-319-12183-3_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12183-3_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-12183-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics