Skip to main content

Hazard Assessment

  • Living reference work entry
  • First Online:
Encyclopedia of Engineering Geology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Danger assessment; Threat assessment

Definition

Hazard assessment is the procedure to characterize and map the location, magnitude, intensity, geometry, and frequency or probability of occurrence, and other characteristics of a given threat, event, phenomenon, process, situation, or activity that may potentially be harmful to the affected population and damaging the society and the environment.

Definition of frequency or probability is a complex endeavor that includes the causes of threats (state of territory, predisposing factors, triggering mechanisms), long-term evolution, and present-day trends (monitoring and geoindicators ), resulting in the frequency/probability of occurrence of certain phenomenon over time (or the susceptibility that an area may be affected by specific perils).

Definitional Uncertainties

Risk assessments require hazard assessment, exposure identification , and vulnerability analysis data at the appropriate scale as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alfieri L, Salamon P, Bianchi A, Neal J, Bates P, Feyen L (2014) Advances in pan-European flood hazard mapping. Hydrol Process 28:4067–4077. https://doi.org/10.1002/hyp.9947, Published online 16 July 2013 in Wiley Online Library (wileyonlinelibrary.com)

  • Antonioli F, Bard E, Silenzi S, Potter EK, Improta S (2004) 215 kyr history of sea level based on submerged speleothems. Glob Planet Change 43:57–78

    Article  Google Scholar 

  • Armonia (2005a) Applied multi-risk mapping of natural hazards for impact assessment, Report on the definition of possible common procedures and methodologies of spatial planning useful to provide a new generation of a spatial planning standard for the EU. EU Project, Contract 511208

    Google Scholar 

  • Armonia (2005b) Applied multi-risk mapping of natural hazards for impact assessment, State-of-art for individual natural risk assessment methodologies for different risk categories applied either by scientific community or administrative end-users. EU Project, Contract 511208

    Google Scholar 

  • Banks NG, Tilling RI, Harlow DH, Evert JW (1989) Volcano monitoring and short term forecast. In: Tilling RI (ed) Volcanic hazard. American Geophysical Union, Washington, DC, pp 51–80

    Chapter  Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervas J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):209–263

    Google Scholar 

  • Crandell DR, Miller CD, Glicken H, Christiansen RL, Newhall CG (1984) Catastrophic debris avalanche of Pleistocene age from ancestral Mount Shasta volcano, California. Geology 12:143–146

    Article  Google Scholar 

  • Cruden DM (1991) A simple definition of a landslide. IAEG Bull 43:27–29

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transportation Research Board special report 247. National Academy Press, Washington, DC, pp 36–75

    Google Scholar 

  • Delmonaco G, Margottini C, Serafini S (1999) Multi-hazard risk assessment and zoning: an integrated approach for incorporating natural disaster reduction into sustainable development. TIGRA (The Integrated Geological Risk Assessment) Project (Env4-CT96-0262) Summary Report

    Google Scholar 

  • Delmonaco G, Leoni G, Margottini C, Puglisi C, Spizzichino D (2003) Large scale debris flow hazard assessment: a geotechnical approach and GIS modelling. Nat Hazards Earth Syst Sci 3:443–455

    Article  Google Scholar 

  • Dillon GK, Menakis J, Fay F (2015) Wildland fire potential: a tool for assessing wildfire risk and fuels management needs. In: Keane RE, Jolly M, Parsons R, Riley K (eds) Proceedings of the large wildland fires conference; May 19–23, 2014; Missoula, MT. Proc. RMRS-P-73. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, pp 60–76

    Google Scholar 

  • EEA (2010) Mapping the impacts of natural hazards and technological accidents in Europe. An overview of the last decade. EEA Technical report no 13/2010, ISSN 1725-2237

    Google Scholar 

  • Farrokh N (2013) Hazard. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Netherlands

    Google Scholar 

  • Fleischhauer M, Greiving S, Schlusemann B, Schmidt-Thomé P, Kallio H, Tarvainen T, Jarva I (2005) Multi-risk assessment of spatially relevant hazards in Europe. ESPON, European Spatial Planning Observation Network, ESMG symposium 11–13 Oct 2005, Nürnberg

    Google Scholar 

  • Fournier d’Albe EM (1979) Objectives of volcanic monitoring and prediction. J Geol Soc Lond 136:321–326

    Article  Google Scholar 

  • Galloway D (2013) Subsidence induced by underground extraction. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Netherlands

    Google Scholar 

  • Garcia-Aristizabal A, Marzocchi W (2013) Multi-risk evaluation and mitigation strategies. Scenarios of cascade events. EU Project New methodologies for multi-hazard and multi-risk assessment methods for Europe (Matrix), ENV.2010.6.1.3.4

    Google Scholar 

  • Grünthal G (ed) (1998) European Macroseismic Scale 1998 – EMS-98, Conseil de l’Europe, Cashier du Cen. Européen Géodyn. Seismol., vol 15. Musée National d’ Histoire Naturelle Section Astrophysique et Géophysique, Luxembourg

    Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17. https://doi.org/10.1007/s10346-007-0112-1

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Kharecha P, Lacis A, Miller R, Nazarenko L, Lo K, Schmidt GA, Russell G, Aleinov I, Bauer S, Baum E, Cairns B, Canuto V, Chandler M, Cheng Y, Cohen A, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Jonas J, Kelley M, Kiang N.Y, Koch D, Labow G, Lerner J, Menon S, Novakov T, Oinas V, Perlwitz J, Rind D, Romanau A, Schmunk R, Shindell D, Stone P, Sun S, Streets D, Tausnev N, Thresher D, Unger N, Yao M, Zhang S (2007) Dangerous human-made interference with climate: a GISS modelE study. Atmos Chem Phys 7:2287–2312

    Article  Google Scholar 

  • Hawkes P (2013) Sea level change. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Netherlands

    Google Scholar 

  • Hungr O (2002) Analytical models for slides and flows. In: Proceedings of international symposium of landslide risk mitigation and protection of cultural and natural heritage, Kyoto, pp 559–586

    Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. https://doi.org/10.1007/s10346-013-0436-y

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. WG I of the Intergovernmental Panel on Climate Change (IPCC) [Houghton JL, Ding Y, Griggs DJ et al (eds)]. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007a) Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of Working Group II to the fourth assessment. Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • IPCC (2007b) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the fourth assessment. Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change [Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds)]. Cambridge University Press, Cambridge, UK/New York, 582 pp

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, Meyer LA (eds)]. IPCC, Geneva, 151 pp

    Google Scholar 

  • JRC/ISDR (2004) State of the art in Na-Tech risk management, EUR21292 EN

    Google Scholar 

  • Lario J, Bardají T, Silva PG, Zazo C, Goy JL (2016) Improving the coastal record of tsunamis in the ESI-07 scale: tsunami environmental effects scale (TEE-16 scale). Geol Acta 14(2):179–193

    Google Scholar 

  • Mejiri O, Menoni S, Matias K, Aminoltaheri N (2017) Crisis information to support spatial planning in post disaster recovery. Int J Disaster Risk Reduct 22:46–61

    Article  Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87(C2):1231–1238

    Article  Google Scholar 

  • Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530. https://doi.org/10.1007/s00445-003-0336-4

    Article  Google Scholar 

  • Papadopulos G, Imamura F (2001) A proposal for a new tsunami intensity scale. International tsunami symposium (ITS) 2001 proceedings, session 5, number 5-1, pp 569–577

    Google Scholar 

  • Power W, Leonard GS (2013) Tsunami. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Netherlands

    Google Scholar 

  • Pyle DM (2000) Size of volcanic eruptions. In: Sigurdsson H (ed) Encyclopaedia of volcanoes. Academic Press

    Google Scholar 

  • Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, Somerville RCJ (2007) Recent climate observations compared to projections. Science 316:709

    Article  Google Scholar 

  • Ranke U (2016) Natural disaster risk management. Springer International Publishing, Switzerland

    Google Scholar 

  • Soriano MA (2013) Sinkhole. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Netherlands

    Google Scholar 

  • Stirling M, McVerry G, Gerstenberger M, Litchfield N, Van Dissen R, Berryman K, Barnes P, Wallace L, Villamor P, Langridge R, Lamarche G, Nodder S, Reyners M, Bradley B, Rhoades D, Smith W, Nicol A, Pettinga J, Clark K, Jacobs K (2012) National seismic hazard model for New Zealand: 2010 update. Bull Seismol Soc Am 102(4):1514–1542. https://doi.org/10.1785/0120110170

    Article  Google Scholar 

  • Su Z, Yacob A, Wen J (2003) Assessing relative soil moisture with remote sensing data: theory, experimental validation, and application to drought monitoring over the North China Plain. Phys Chem Earth 28:89–101

    Article  Google Scholar 

  • Thywissen K (2006) Components of risk: a comparative glossary. United Nations University Institute for Environment and Human Security, Bonn

    Google Scholar 

  • Tiefenbacher JP (2014) Urban hazards. In Benton-Short L (ed) Cities of North America: contemporary challenges in U.S. and Canadian cities. Rowman and Littlefield, Lanham, pp 335–376

    Google Scholar 

  • Tinti S, Tonini R, Bressan L, Armigliato A, Gardi A, Guillande R, Valencia N, Scheer S (2011) Handbook of tsunami hazard and damage scenarios. SCHEMA (Scenarios for hazard-induced emergencies management), project n° 030963, specific targeted research project, space priority. European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen, Italy

    Google Scholar 

  • UNDRO (1980) Evaluation of the United Nations Disaster Relief Co-ordinator, Doc. JIU/REP780/11, Oct 1980

    Google Scholar 

  • UNESCO (1972) Convention concerning the protection of the world cultural and natural heritage. UNESCO, Paris

    Google Scholar 

  • USGS (2000) Land subsidence in the United States. USGS Fact Sheet-165-00, Dec 2000. https://water.usgs.gov/ogw/pubs/fs00165/

  • Waltham T, Bell F, Culshaw M (2005) Sinkholes and subsidence. Karst and cavernous rocks in engineering and construction. Springer, Berlin, 382 pp

    Google Scholar 

  • Williams P (2003) Dolines. In: Gunn J (ed) Encyclopedia of caves and karst science. Taylor & Francis, New York/London, pp 304–310

    Google Scholar 

Links

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Margottini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Margottini, C., Menoni, S. (2018). Hazard Assessment. In: Bobrowsky, P., Marker, B. (eds) Encyclopedia of Engineering Geology. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-12127-7_154-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12127-7_154-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12127-7

  • Online ISBN: 978-3-319-12127-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics