Skip to main content

Adipose Structure (White, Brown, Beige)

Metabolic Syndrome

Abstract

Our understanding of adipose tissue physiology and pathophysiology has substantially increased during the last decade. Notably, white adipose tissue (WAT) dysfunction has been proposed as a key determinant of obesity-associated metabolic complications. WAT is a complex metabolic organ composed of many cell types, including adipocytes as the main cell type involved in energy storage. Adipocytes also synthesize numerous molecules involved in the regulation of energy balance, vascular homeostasis, and insulin sensitivity. In obesity, WAT expansion is associated with intensified structural remodeling that compromises the tissue’s metabolic and secretory functions. Failure to efficiently store lipids in WAT results in a “spillover” of the excess of lipids into non-adipose tissues, which further disrupts metabolic homeostasis and contributes to the development of obesity-related pathologies, known collectively as metabolic syndrome. In contrast, brown adipose tissue (BAT) is an energy-dissipating thermogenic organ that produces heat by uncoupling mitochondrial fatty acid oxidation. Activation of BAT thermogenesis can ameliorate the effects of WAT dysfunction in metabolically compromised mouse models. The recent rediscovery of BAT in humans has raised the possibility that BAT could be a therapeutic target for metabolic syndrome. In this chapter, we will discuss important structural and cellular features of the WAT and BAT and how obesity alters WAT and BAT structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agarwal, AK, Garg, A Genetic disorders of adipose tissue development, differentiation, and death. Annu Rev Genomics Hum Genet. 2006; 7: 175–99.

    Article  CAS  PubMed  Google Scholar 

  • Andreozzi, F, Laratta, E, Procopio, C, et al. Interleukin-6 impairs the insulin signaling pathway, promoting production of nitric oxide in human umbilical vein endothelial cells. Mol Cell Biol. 2007; 27: 2372–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arbeeny, CM, Meyers, DS, Hillyer, DE, et al. Metabolic alterations associated with the antidiabetic effect of beta 3-adrenergic receptor agonists in obese mice. Am J Physiol Endocrinol Metab. 1995; 268: E678–E684.

    CAS  Google Scholar 

  • Bagchi, M, Kim, LA, Boucher, J, et al. Vascular endothelial growth factor is important for brown adipose tissue development and maintenance. FASEB J. 2013; 27: 3257–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartelt, A, Bruns, OT, Reimer, R, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011; 17: 200–5.

    Article  CAS  PubMed  Google Scholar 

  • Berry, DC, Stenesen, D, Zeve, D, et al. The developmental origins of adipose tissue. Development. 2013; 140: 3939–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bjørndal, B, Burri, L, Staalesen, V, et al. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes. 2011; 490650.

    Google Scholar 

  • Bordicchia, M, Liu, D, Amri, E, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012; 122: 1022–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borén, J, Taskinen, M-R, Olofsson, S-O, et al. Ectopic lipid storage and insulin resistance: a harmful relationship. J Intern Med. 2013; 274: 25–40.

    Article  PubMed  CAS  Google Scholar 

  • Boström, P, Wu, J, Jedrychowski, MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012; 481: 463–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bourlier, V, Zakaroff-Girard, A, Miranville, A, et al. Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation. 2008; 117: 806–15.

    Article  CAS  PubMed  Google Scholar 

  • Bråkenhielm, E, Veitonmäki, N, Cao, R, et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci USA. 2004; 101: 2476–81.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brito, NA, Brito, MN, Bartness, TJ Differential sympathetic drive to adipose tissues after food deprivation, cold exposure or glucoprivation. Am J Physiol Regul Integr Comp Physiol. 2008; 294: R1445–R1452.

    Article  CAS  PubMed  Google Scholar 

  • Cancello, R, Tordjman, J, Poitou, C, et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes. 2006; 55: 1554–61.

    Article  CAS  PubMed  Google Scholar 

  • Cannon, B, Nedergaard, J Brown Adipose Tissue: function and physiological significance. Physiol Rev. 2004; 84: 277–359.

    Article  CAS  PubMed  Google Scholar 

  • Cannon, B, Nedergaard, J Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Expl Biol. 2011; 214: 242–53.

    Article  Google Scholar 

  • Cao, R, Brakenhielm, E, Wahlestedt, C, et al. Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. PNAS. 2001; 98: 6390–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carobbio, S, Rosen, B, Vidal-Puig, A Adipogenesis: new insights into brown adipose tissue differentiation. J Mol Endocrinol. 2013; 51: T75–T85.

    Article  CAS  PubMed  Google Scholar 

  • Carrière, A, Jeanson, Y, Berger-Müller, S, et al. Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes. 2014; 63: 3253–65.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H, Montagnani, M, Funahashi, T, et al. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem. 2003; 278: 45021–6.

    Article  CAS  PubMed  Google Scholar 

  • Cinti, S, Mitchell, G, Barbatelli, G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005; 46: 2347–55.

    Article  CAS  PubMed  Google Scholar 

  • Clemente-Postigo, M, Queipo-Ortuño, MI, Fernandez-Garcia, D, et al. Adipose tissue gene expression of factors related to lipid processing in obesity. PLoS One. 2011; 6: e24783.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collins, S, Daniel, KW, Rohlfs, EM, et al. Impaired expression and functional activity of the beta 3- and beta 1-adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ob) mice. Mol Endocrinol. 1994; 8: 518–27.

    CAS  PubMed  Google Scholar 

  • Coppack, SW Pro-inflammatory cytokines and adipose tissue. PNAS. 2001; 60: 349–56.

    Article  CAS  Google Scholar 

  • Craft, CS, Pietka, TA, Schappe, T, et al. The extracellular matrix protein MAGP1 supports thermogenesis and protects against obesity and diabetes through regulation of TGF-β. Diabetes. 2014; 63: 1920–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cypess, AM, Lehman, S, Williams, G, et al. Identification and importance of brown adipose tissue in adult humans. New Eng J Med. 2009; 360: 1509–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dani, C Activins in adipogenesis and obesity. Int J Obes (Lond). 2013; 37: 163–6.

    Article  CAS  Google Scholar 

  • Divoux, A, Moutel, S, Poitou, C, et al. Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. J Clin Endocrinol Metab. 2012; 97: E1677–E1685.

    Article  CAS  PubMed  Google Scholar 

  • Divoux, A, Tordjman, J, Lacasa, D, et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes. 2010; 59: 2817–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dreier, R, Grässel, S, Fuchs, S, et al. Pro-MMP-9 is a specific macrophage product and is activated by osteoarthritic chondrocytes via MMP-3 or a MT1-MMP/MMP-13 cascade. Exp Cell Res. 2004; 297: 303–12.

    Article  CAS  PubMed  Google Scholar 

  • Duffaut, C, Galitzky, J, Lafontan, M, et al. Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity. Biochem Biophys Res Commun. 2009; 384: 482–425.

    Article  CAS  PubMed  Google Scholar 

  • Elias, I, Franckhauser, S, Bosch, F New insights into adipose tissue VEGF-A actions in the control of obesity and insulin resistance. Adipocyte. 2013; 2: 109–12.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fain, JN Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm. 2006; 74: 443–77.

    Article  CAS  PubMed  Google Scholar 

  • Feldmann, HM, Golozoubova, V, Cannon, B, et al. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 2009; 9: 203–9.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, JA, Mampel, T, Villarroya, F, et al. Direct assessment of brown adipose tissue as a site of systemic tri-iodothyronine production in the rat. Biochem J. 1987; 243: 281–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fisher, FM, Kleiner, S, Douris, N, et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Gene Dev. 2012; 26: 271–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frontini, A, Vitali, A, Perugini, J, et al. White-to-brown transdifferentiation of omental adipocytes in patients affected by pheochromocytoma. Biochem Biophys Acta. 2013; 1831: 950–9.

    Google Scholar 

  • Gealekman, O, Guseva, N, Hartigan, C, et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011; 123: 186–94.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gilsanz, V, Smith, M, Goodarzian, F, et al. Changes in brown adipose tissue in boys and girls during childhood and puberty. J Pediatr. 2013; 160: 604–9.

    Article  Google Scholar 

  • Giordano, A, Coppari, R, Castellucci, M, et al. Sema3a is produced by brown adipocytes and its secretion is reduced following cold acclimation. J Neurocytol. 2001; 30: 5–10.

    Article  CAS  PubMed  Google Scholar 

  • Giordano, A, Morroni, M, Santone, G, et al. Tyrosine hydroxylase, neuropeptide Y, substance P, calcitonin gene-related peptide and vasoactive intestinal peptide in nerves of rat periovarian adipose tissue: an immunohistochemical and ultrastructural investigation. J Neurocytol. 1996; 25: 125–36.

    Article  CAS  PubMed  Google Scholar 

  • Giorgino, F, Laviola, L, Eriksson, JW Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol Scand. 2005; 183: 13–30.

    Article  CAS  PubMed  Google Scholar 

  • Gnad, T, Scheibler, S, von Kügelgen, I, et al. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature. 2014; [Epub ahead of print].

    Google Scholar 

  • Hansen, JB, Kristiansen, K Regulatory circuits controlling white versus brown adipocyte differentiation. Biochem J. 2006; 398: 153–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haraida, S, Nerlich, AG, Wiest, I, et al. Distribution of basement membrane components in normal adipose tissue and in benign and malignant tumors of lipomatous origin. Mod Pathol. 1996; 9: 137–44.

    CAS  PubMed  Google Scholar 

  • Henegar, C, Tordjman, J, Achard, V, et al. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol. 2008; 9: R14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Himms-Hagen, J, Cui, J, Danforth, E, et al. Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. Am J Physiol-Reg I. 1994; 266: R1371–R1382.

    CAS  Google Scholar 

  • Hocking, SL, Wu, LE, Guilhaus, M, et al. Intrinsic depot-specific differences in the secretome of adipose tissue, preadipocytes, and adipose tissue-derived microvascular endothelial cells. Diabetes. 2010; 59: 3008–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hondares, E, Gallego-Escuredo, JM, Flachs, P, et al. Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue. Metabolism. 2014; 63: 312–7.

    Article  CAS  PubMed  Google Scholar 

  • Hondares, E, Iglesias, R, Giralt, A, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 2011a; 286: 12983–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hondares, E, Rosell, M, Gonzalez, F, et al. Hepatic FGF21 expression is induced at birth via PPARa in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab. 2011b; 11: 206–12.

    Article  CAS  Google Scholar 

  • Hu, P, Luo, B-H Integrin bi-directional signaling across the plasma membrane. J Cell Physiol. 2013; 228: 306–12.

    Article  CAS  PubMed  Google Scholar 

  • Imhof, BA, Aurrand-Lions, M Angiogenesis and inflammation face off. Nat Med. 2006; 12: 171–2.

    Article  CAS  PubMed  Google Scholar 

  • Isakson, P, Hammarstedt, A, Gustafson, B, et al. Impaired preadipocyte differentiation in human abdominal obesity: role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes. 2009; 58: 1550–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Janssen, I, Powell, LH, Kazlauskaite, R, et al. Testosterone and visceral fat in midlife women: the Study of Women’s Health Across the Nation (SWAN) fat patterning study. Obes (Silver Spring). 2010; 18: 604–10.

    Article  CAS  Google Scholar 

  • Keophiphath, M, Achard, V, Henegar, C, et al. Macrophage-secreted factors promote a profibrotic phenotype in human preadipocytes. Mol Endocrinol. 2009; 23: 11–24.

    Article  CAS  PubMed  Google Scholar 

  • Kim, C-S, Park, H-S, Kawada, T, et al. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes. 2006; 30: 1347–55.

    Article  CAS  Google Scholar 

  • Kintscher, U, Hartge, M, Hess, K, et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Aterioscler Thromb Vasc Biol. 2008; 28: 1304–10.

    Article  CAS  Google Scholar 

  • Kobashi, C, Urakaze, M, Kishida, M, et al. Adiponectin inhibits endothelial synthesis of interleukin-8. Circ Res. 2005; 97: 1245–52.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, H, Ouchi, N, Kihara, S, et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res. 2004; 94: e27–e31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kreier, F, Buijs, RM Evidence for parasympathetic innervation of white adipose tissue, clearing up some vagaries. Am J Physiol regul Integr Comp Physiol. 2007; 293: R548–9; author reply R550–2, discussion R553–4.

    Google Scholar 

  • Kunduzova, O, Alet, N, Delesque-Touchard, N, et al. Apelin/APJ signaling system: a potential link between adipose tissue and endothelial angiogenic processes. FASEB J. 2008; 22: 4146–53.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, E-Y, Shin, S-K, Cho, Y-Y, et al. Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity. BMC Genomics. 2012; 13: 450.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lafontan, M, Langin, D Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res. 2009; 48: 275–97.

    Article  CAS  PubMed  Google Scholar 

  • Van der Lans, AAJJ, Hoeks, J, Brans, B, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest. 2013; 123: 3395–403.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lean, M Brown adipose tissue in humans. Proc Nutr Soc. 1989; 48: 243–56.

    Article  CAS  PubMed  Google Scholar 

  • LeBleu, VS, Macdonald, B, Kalluri, R Structure and function of basement membranes. Exp Biol Med. 2007; 232: 1121–9.

    Article  CAS  Google Scholar 

  • Lee, P, Greenfield, JR, Ho, KKY, et al. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol-Endoc M. 2010; 299: E601–606.

    CAS  Google Scholar 

  • Lee, P, Linderman, JD, Smith, S, et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014a; 19: 302–9.

    Article  CAS  PubMed  Google Scholar 

  • Lee, P, Smith, S, Linderman, J, et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes. 2014b; 63: 3686–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y-H, Petkova, AP, Mottillo, EP, et al. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab. 2012; 15: 480–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li, G, Klein, RL, Matheny, M, et al. Induction of uncoupling protein 1 by central interleukin-6 gene delivery is dependent on sympathetic innervation of brown adipose tissue and underlies one mechanism of body weight reduction in rats. Neuroscience. 2002; 115: 879–89.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenbelt, WDVM, Vanhommerig, JW, Smulders, NM, et al. Cold-activated brown adipose tissue in healthy men. New Eng J Med. 2009; 360: 1500–8.

    Article  Google Scholar 

  • Lidell, ME, Betz, MJ, Leinhard, OD, et al. Evidence for two types of brown adipose tissue in humans. Nat Med. 2013; 19: 631–4.

    Article  CAS  PubMed  Google Scholar 

  • Lidell, ME, Seifert, EL, Westergren, R, et al. The adipocyte-expressed forkhead transcription factor Foxc2 regulates metabolism through altered mitochondrial function. Diabetes. 2011; 60: 427–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu, X, Pérusse, F, Bukowiecki, LJ Mechanisms of the antidiabetic effects of the β3-adrenergic agonist CL-316243 in obese Zucker-ZDF rats. Am J Physiol Regul Integr Comp Physiol. 1998; 274: R1212–R1219.

    CAS  Google Scholar 

  • López, M, Alvarez, C V, Nogueiras, R, et al. Energy balance regulation by thyroid hormones at central level. Trends Mol Med. 2013; 19: 418–27.

    Article  PubMed  CAS  Google Scholar 

  • Love-Gregory, L, Abumrad, NA CD36 genetics and the metabolic complications of obesity. Curr Opin Clin Nutr Metab Care. 2011; 14: 527–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lowell, BB, S-Susulic, V, Hamann, A, et al. Development of obesity in transgenic mice after genetic ablation of adipose tissue. Nature. 1993; 366: 740–2.

    Article  CAS  PubMed  Google Scholar 

  • Lumeng, CN, Bodzin, JL, Saltiel, AR Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007a; 117: 175–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lumeng, CN, DelProposto, JB, Westcott, DJ, et al. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes. 2008; 57: 3239–32346.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lumeng, CN, Deyoung, SM, Saltiel, AR Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab. 2007b; 292: E166–E174.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lundgren, M, Svensson, M, Lindmark, S, et al. Fat cell enlargement is an independent marker of insulin resistance and “hyperleptinaemia”. Diabetologia. 2007; 50: 625–33.

    Article  CAS  PubMed  Google Scholar 

  • Mariman, ECM, Wang, P Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell Mol Life Sci. 2010; 67: 1271–92.

    Article  CAS  Google Scholar 

  • De Matteis, R, Ricquier, D, Cinti, S TH-, NPY-, SP-, and CGRP-immunoreactive nerves in interscapular brown adipose tissue of adult rats acclimated at different temperatures: an immunohistochemical study. J Neurocytol. 1998; 27: 877–86.

    Article  PubMed  Google Scholar 

  • Mejhert, N, Wilfling, F, Esteve, D, et al. Semaphorin 3C is a novel adipokine linked to extracellular matrix composition. Diabetologia. 2013; 56: 1792–801.

    Article  CAS  PubMed  Google Scholar 

  • Miller, NE, Michel, CC, Nanjee, MN, et al. Secretion of adipokines by human adipose tissue in vivo: partitioning between capillary and lymphatic transport. Am J Physiol Endocrinol Metab. 2011; 301: E659–E667.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Aliaga, MJ, Pérez-Echarri, N, Marcos-Gómez, B, et al. Cardiotrophin-1 is a key regulator of glucose and lipid metabolism. Cell Metab. 2011; 14: 242–53.

    Article  CAS  PubMed  Google Scholar 

  • Mori, S, Kiuchi, S, Ouchi, A, et al. Characteristic expression of extracellular matrix in subcutaneous adipose tissue development and adipogenesis; comparison with visceral adipose tissue. Int J Biol Sci. 2014; 10: 825–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murano, I, Barbatelli, G, Giordano, A, et al. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J Anat. 2009; 214: 171–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muzik, O, Mangner, TJ, Leonard, WR, et al. 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat. J Nucl Med. 2013; 54: 523–31.

    Article  CAS  PubMed  Google Scholar 

  • Néchad, M, Ruka, E, Thibault, J Production of nerve growth factor by brown fat in culture: relation with the in vivo developmental stage of the tissue. Comp Biochem Physiol Comp Physiol. 1994; 107: 381–8.

    Article  PubMed  Google Scholar 

  • Nedergaard, J, Bengtsson, T, Cannon, B, et al. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007; 293: E444–E452.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, KD, Qiu, Y, Cui, X, et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature. 2011; 480: 104–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niijima, A Reflex effects from leptin sensors in the white adipose tissue of the epididymis to the efferent activity of the sympathetic and vagus nerve in the rat. Neurosci Lett. 1999; 262: 125–8.

    Article  CAS  PubMed  Google Scholar 

  • Nijhuis, J, Rensen, SS, Slaats, Y, et al. Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obes (Silver Spring). 2009; 17: 2014–8.

    Article  CAS  Google Scholar 

  • Odegaard, JI, Ricardo-Gonzalez, RR, Goforth, MH, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature. 2007; 447: 1116–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orava, J, Nuutila, P, Lidell, ME, et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 2011; 14: 272–9.

    Article  CAS  PubMed  Google Scholar 

  • Orava, J, Nuutila, P, Noponen, T, et al. Blunted metabolic responses to cold and insulin stimulation in brown adipose yissue of obese humans. Obesity. 2013;

    Google Scholar 

  • Ouchi, N, Kobayashi, H, Kihara, S, et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem. 2004; 279: 1304–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ouellet, V, Routhier-Labadie, A, Bellemare, W, et al. Outdoor temperture, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab. 2011; 96: 192–9.

    Article  CAS  PubMed  Google Scholar 

  • Peeraully, MR, Jenkins, JR, Trayhurn, P, et al. NGF gene expression and secretion in white adipose tissue: regulation in 3T3-L1 adipocytes by hormones and inflammatory cytokines. Am J Physiol Endocrinol Metab. 2004; 287: E331–E339.

    Article  CAS  PubMed  Google Scholar 

  • Pellegrinelli, V, Heuvingh, J, du Roure, O, et al. Human adipocyte function is impacted by mechanical cues. J Pathol. 2014a; 233: 183–95.

    Article  CAS  PubMed  Google Scholar 

  • Pellegrinelli, V, Rouault, C, Veyrie, N, et al. Endothelial cells from visceral adipose tissue disrupt adipocyte functions in a three-dimensional setting: partial rescue by angiopoietin-1. Diabetes. 2014b; 63: 535–49.

    Article  CAS  PubMed  Google Scholar 

  • Permana, PA, Menge, C, Reaven, PD Macrophage-secreted factors induce adipocyte inflammation and insulin resistance. Biochem Biophys Res Commun. 2006; 341: 507–14.

    Article  CAS  PubMed  Google Scholar 

  • Pond, CM Adipose tissue and the immune system. Prostaglandins Leukot Essent Fat Acids. 2005; 73: 17–30.

    Article  CAS  Google Scholar 

  • Potenza, MA, Addabbo, F, Montagnani, M Vascular actions of insulin with implications for endothelial dysfunction. Am J Physiol Endocrinol Metab. 2009; 297: E568–5677.

    Article  CAS  PubMed  Google Scholar 

  • Puigserver, P, Wu, Z, Park, CW, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998; 92: 829–39.

    Article  CAS  PubMed  Google Scholar 

  • Purkayastha, S, Cai, D Neuroinflammatory basis of metabolic syndrome. Mol Metab. 2013; 2: 356–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qiu, Y, Nguyen, KD, Odegaard, JI, et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell. 2014; 157: 12921–308.

    Google Scholar 

  • Rabelo, R, Reyes, C, Schifman, A, et al. Interactions among receptors, thyroid hormone response elements, and ligands in the regulation of the rat uncoupling protein gene expression by thyroid hormone. Endocrinology. 1996; 137: 3478–87.

    CAS  PubMed  Google Scholar 

  • Rao, RR, Long, JZ, White, JP, et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell. 2014; 157: 1279–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rask-Madsen, C, Domínguez, H, Ihlemann, N, et al. Tumor necrosis factor-alpha inhibits insulin’s stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans. Circulation. 2003; 108: 1815–21.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, LD, Ashmore, T, Kotwica, AO, et al. Inorganic nitrate promotes the browning of white adipose tissue through the nitrate-nitrite-nitric oxide pathway. Diabetes. 2014a; [Epub ahead of print].

    Google Scholar 

  • Roberts, LD, Boström, P, O’Sullivan, JF, et al. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 2014b; 19: 96–108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodríguez Fernández, JL, Ben-Ze’ev, A Regulation of fibronectin, integrin and cytoskeleton expression in differentiating adipocytes: inhibition by extracellular matrix and polylysine. Differentiation. 1989; 42: 65–74.

    Article  PubMed  Google Scholar 

  • Rosen, ED, MacDougald, OA Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006; 7: 885–96.

    Article  CAS  PubMed  Google Scholar 

  • Rosen, ED, Spiegelman, BM Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol. 2000; 16: 145–71.

    Article  CAS  PubMed  Google Scholar 

  • Rosenwald, M, Perdikari, A, Rülicke, T, et al. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol. 2013; 15: 659–67.

    Article  CAS  PubMed  Google Scholar 

  • Rothwell, NJ, Stock, MJ Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clin Sci. 1983; 64: 19–23.

    Article  CAS  PubMed  Google Scholar 

  • Rouault, C, Pellegrinelli, V, Schilch, R, et al. Roles of chemokine ligand-2 (CXCL2) and neutrophils in influencing endothelial cell function and inflammation of human adipose tissue. Endocrinology. 2013; 154: 1069–79.

    Article  CAS  PubMed  Google Scholar 

  • Ryu, V, Garretson, JT, Liu, Y, et al. Brown adipose tissue has sympathetic-sensory feedback circuits. J Neurosci. 2015; 35: 2181–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saganami, T, Nishida, J, Ogawa, Y A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Aterioscler Thromb Vasc Biol. 2005; 25: 2062–2–68.

    Google Scholar 

  • Sbarbati, A, Accorsi, D, Benati, D, et al. Subcutaneous adipose tissue classification. Eur J Histochem. 2010; 54: e48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seale, P, Bjork, B, Yang, W, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008; 454: 961–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seale, P, Conroe, HM, Estall, J, et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 2011; 121: 53–6.

    Google Scholar 

  • Serradeil-Le Gal, C, Lafontan, M, Raufaste, D, et al. Characterization of NPY receptors controlling lipolysis and leptin secretion in human adipocytes. FEBS Lett. 2000; 475: 150–6.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, I, Aprahamian, T, Kikuchi, R, et al. Vascular rarefaction mediates whitening of brown fat in obesity. J Clin Invest. 2014; 124: 2099–112.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skarulis, MC, Celi, FS, Mueller, E, et al. Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J Clin Endocr Metab. 2010; 95: 256–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skurk, T, Alberti-Huber, C, Herder, C, et al. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab. 2007; 92: 1023–33.

    Article  CAS  PubMed  Google Scholar 

  • Søndergaard, E, Gormsen, LC, Christensen, MH, et al. Chronic adrenergic stimulation induces brown adipose tissue differentiation in visceral adipose tissue. Diabet Med. 2014; doi: 10.1111/dme.12595.

    Google Scholar 

  • Springer, TA Adhesion receptors of the immune system. Nature. 1990; 346: 425–34.

    Article  CAS  PubMed  Google Scholar 

  • Strissel, KJ, Stancheva, Z, Miyoshi, H, et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007; 56: 2910–8.

    Article  CAS  PubMed  Google Scholar 

  • Sun, K, Park, J, Gupta, OT, et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat Commun. 2014; 5: 3485.

    PubMed Central  PubMed  Google Scholar 

  • Sundberg, C, Kowanetz, M, Brown, LF, et al. Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab Invest. 2002; 82: 387–401.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Q-Q, Otto, TC, Lane, MD Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. PNAS. 2004; 101: 9607–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang, W, Zeve, D, Suh, JM, et al. White fat progenitor cells reside in the adipose vasculature. Science. 2008; 322: 583–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tchernof, A, Bélanger, C, Morisset, A-S, et al. Regional differences in adipose tissue metabolism in women: minor effect of obesity and body fat distribution. Diabetes. 2006; 55: 1353–60.

    Article  CAS  PubMed  Google Scholar 

  • Tchernof, A, Després, J-P Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013; 93: 359–404.

    Article  CAS  PubMed  Google Scholar 

  • Tracy, TF Editorial: Acute pancreatitis and neutrophil gelatinase MMP9: don’t get me started! J Leukoc Biol. 2012; 91: 682–4.

    Article  CAS  PubMed  Google Scholar 

  • Traktuev, DO, Merfeld-Clauss, S, Li, J, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008; 102: 77–85.

    Article  CAS  PubMed  Google Scholar 

  • Tran, K, Gealekman, O, Frontini, A, et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab. 2012; 15: 222–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tseng, Y-H, Kokkotou, E, Schulz, TJ, et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 2008; 454: 1000–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tupone, D, Madden, CJ, Morrison, SF Autonomic regulation of brown adipose tissue thermogenesis in health and disease: potential clinical applications for altering BAT thermogenesis. Front Neurosci. 2014; 8: 14.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vallerand, AL, Lupien, J, Bukowiecki, LJ Cold exposure reverses the diabetogenic effects of high-fat feeding. Diabetes. 1986; 35: 329–34.

    Article  CAS  PubMed  Google Scholar 

  • Valverde, AM Role of insulin in the biology of the fetal brown adipocyte. Av Diabetol. 2002; 18: 145–51.

    Google Scholar 

  • Villaret, A, Galitzky, J, Decaunes, P, et al. Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence. Diabetes. 2010; 59: 2755–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Virtanen, KA, Lidell, ME, Orava, J, et al. Functional brown adipose tissue in healthy adults. New Eng J Med. 2009; 360: 1518–25.

    Article  CAS  PubMed  Google Scholar 

  • Vitali, A, Murano, I, Zingaretti, MC, et al. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res. 2012; 53: 619–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, G-X, Zhao, X-Y, Meng, Z-X, et al. The brown fat–enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med. 2014;

    Google Scholar 

  • Whittle, AJ, Carobbio, S, Martins, L, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell. 2012; 149: 871–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xue, Y, Petrovic, N, Cao, R, et al. Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab. 2009; 9: 99–109.

    Article  CAS  PubMed  Google Scholar 

  • Yoneshiro, T, Aita, S, Matsushita, M, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013; 123: 3404–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu, Q, Stamenkovic, I Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000; 14: 163–276.

    PubMed Central  PubMed  Google Scholar 

  • Zaragosi, L-E, Ailhaud, G, Dani, C Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells. 2006; 24: 2412–9.

    Article  CAS  PubMed  Google Scholar 

  • Zaragosi, L-E, Wdziekonski, B, Villageois, P, et al. Activin a plays a critical role in proliferation and differentiation of human adipose progenitors. Diabetes. 2010; 59: 2513–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeyda, M, Farmer, D, Todoric, J, et al. Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes (Lond). 2007; 31: 1420–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Peirce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Peirce, V., Pellegrinelli, V., Vidal-Puig, A. (2015). Adipose Structure (White, Brown, Beige). In: Ahima, R. (eds) Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-12125-3_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12125-3_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-12125-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Adipose Structure (White, Brown, Beige)
    Published:
    27 July 2023

    DOI: https://doi.org/10.1007/978-3-319-12125-3_23-2

  2. Original

    Adipose Structure (White, Brown, Beige)
    Published:
    09 July 2015

    DOI: https://doi.org/10.1007/978-3-319-12125-3_23-1