Advertisement

Derivative-Based Global Sensitivity Measures

  • Sergey Kucherenko
  • Bertrand Iooss
Living reference work entry

Abstract

The method of derivative-based global sensitivity measures (DGSM) has recently become popular among practitioners. It has a strong link with the Morris screening method and Sobol’ sensitivity indices and has several advantages over them. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is generally much lower than that for estimation of Sobol’ sensitivity indices. This paper presents a survey of recent advances in DGSM concerning lower and upper bounds on the values of Sobol’ total sensitivity indices S i tot. Using these bounds it is possible in most cases to get a good practical estimation of the values of S i tot. Several examples are used to illustrate an application of DGSM.

Keywords

Sensitivity analysis Sobol’ indices Morris method Model derivatives DGSM Poincaré inequality 

References

  1. 1.
    Bobkov, S.G.: Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27(4), 1903–1921 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Campolongo, F., Braddock, R.: The use of graph theory in the sensitivity analysis of model output: a second order screening method. Reliab. Eng. Syst. Saf. 64, 1–12 (1999)CrossRefGoogle Scholar
  3. 3.
    Campolongo, F., Cariboni, J., Saltelli, A.: An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 22, 1509–1518 (2007)CrossRefGoogle Scholar
  4. 4.
    Cropp, R., Braddock, R.: The new Morris method: an efficient second-order screening method. Reliab. Eng. Syst. Saf. 78, 77–83 (2002)CrossRefGoogle Scholar
  5. 5.
    De Lozzo, M., Marrel, A.: Estimation of the derivative-based global sensitivity measures using a Gaussian process metamodel, SIAM/ASA J. on Uncertain. Quantif. (2016, Accepted for publication)Google Scholar
  6. 6.
    Fédou, J.M., Rendas, M.J.: Extending Morris method: identification of the interaction graph using cycle-equitable designs. J. Stat. Comput. Simul. 85, 1398–1419 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Friedman, J., Popescu, B.: Predictive learning via rule ensembles. Ann. Appl. Stat. 2(3), 916–954 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fruth, J., Roustant, O., Kuhnt, S.: Total interaction index: a variance-based sensitivity index for second-order interaction screening. J. Stat. Plan. Inference 147, 212–223 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Automatic Differentiation. SIAM, Philadelphia (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hardy, G., Littlewood, J., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, London (1988)zbMATHGoogle Scholar
  11. 11.
    Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of non linear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996)CrossRefGoogle Scholar
  12. 12.
    Iooss, B., Popelin, A.L., Blatman, G., Ciric, C., Gamboa, F., Lacaze, S., Lamboni, M.: Some new insights in derivative-based global sensitivity measures. In: Proceedings of the PSAM11 ESREL 2012 Conference, Helsinki, pp. 1094–1104 (2012)Google Scholar
  13. 13.
    Jansen, K., Leovey, H., Nube, A., Griewank, A., Mueller-Preussker, M.: A first look of quasi-Monte Carlo for lattice field theory problems. Comput. Phys. Commun. 185, 948–959 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jansen, M.: Analysis of variance designs for model output. Comput. Phys. Commun. 117, 25–43 (1999)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kiparissides, A., Kucherenko, S., Mantalaris, A., Pistikopoulos, E.: Global sensitivity analysis challenges in biological systems modeling. J. Ind. Eng. Chem. Res. 48, 1135–1148 (2009)CrossRefGoogle Scholar
  16. 16.
    Kucherenko, S., Song, S.: Derivative-based global sensitivity measures and their link with Sobol’ sensitivity indices. In: Cools, R., Nuyens, D. (eds.) Proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC 2014). Springer, Leuven (2015)Google Scholar
  17. 17.
    Kucherenko, S., Rodriguez-Fernandez, M., Pantelides, C., Shah, N.: Monte carlo evaluation of derivative-based global sensitivity measures. Reliab. Eng. Syst. Saf. 94, 1135–1148 (2009)CrossRefGoogle Scholar
  18. 18.
    Lamboni, M.: New way of estimating total sensitivity indices. In: Proceedings of the 7th International Conference on Sensitivity Analysis of Model Output (SAMO 2013), Nice (2013)Google Scholar
  19. 19.
    Lamboni, M., Iooss, B., Popelin, A.L., Gamboa, F.: Derivative-based global sensitivity measures: general links with sobol’ indices and numerical tests. Math. Comput. Simul. 87, 45–54 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu, R., Owen, A.: Estimating mean dimensionality of analysis of variance decompositions. J. Am. Stat. Assoc. 101(474), 712–721 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Morris, M.: Factorial sampling plans for preliminary computational experiments. Technometrics 33, 161–174 (1991)CrossRefGoogle Scholar
  22. 22.
    Muehlenstaedt, T., Roustant, O., Carraro, L., Kuhnt, S.: Data-driven Kriging models based on FANOVA-decomposition. Stat. Comput. 22, 723–738 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Patelli, E., Pradlwarter, H.: Monte Carlo gradient estimation in high dimensions. Int. J. Numer. Methods Eng. 81, 172–188 (2010)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Patelli, E., Pradlwarter, H.J., Schuëller, G.I.: Global sensitivity of structural variability by random sampling. Comput. Phys. Commun. 181, 2072–2081 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Petit, S.: Analyse de sensibilité globale du module MASCARET par l’utilisation de la différentiation automatique. Rapport de stage de fin d’études de Supélec, EDF R&D, Chatou (2015)Google Scholar
  26. 26.
    Pujol, G.: Simplex-based screening designs for estimating metamodels. Reliab. Eng. Syst. Saf. 94, 1156–1160 (2009)CrossRefGoogle Scholar
  27. 27.
    Rodriguez-Fernandez, M., Banga, J., Doyle, F.: Novel global sensitivity analysis methodology accounting for the crucial role of the distribution of input parameters: application to systems biology models. Int. J. Robust Nonlinear Control 22, 1082–1102 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Roustant, O., Fruth, J., Iooss, B., Kuhnt, S.: Crossed-derivative-based sensitivity measures for interaction screening. Math. Comput. Simul. 105, 105–118 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Saltelli, A.: Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145, 280–297 (2002)CrossRefzbMATHGoogle Scholar
  30. 30.
    Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global sensitivity analysis. The primer. Wiley, Chichester/Hoboken (2008)zbMATHGoogle Scholar
  31. 31.
    Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181, 259–270 (2010)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Santiago, J., Corre, B., Claeys-Bruno, M., Sergent, M.: Improved sensitivity through Morris extension. Chemom. Intell. Lab. Syst. 113, 52–57 (2012)CrossRefGoogle Scholar
  33. 33.
    Sobol, I.: Sensitivity estimates for non linear mathematical models (in Russian). Matematicheskoe Modelirovanie 2, 112–118 (1990)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Sobol, I.: Sensitivity estimates for non linear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Sobol, I.: Global sensitivity indices for non linear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Sobol, I., Gershman, A.: On an alternative global sensitivity estimators. In: Proceedings of SAMO 1995, Belgirate, pp. 40–42 (1995)Google Scholar
  37. 37.
    Sobol, I., Kucherenko, S.: Global sensitivity indices for non linear mathematical models. Rev. Wilmott Mag. 1, 56–61 (2005)CrossRefGoogle Scholar
  38. 38.
    Sobol, I., Kucherenko, S.: Derivative based global sensitivity measures and their links with global sensitivity indices. Math. Comput. Simul. 79, 3009–3017 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Sobol, I., Kucherenko, S.: A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices. Comput. Phys. Commun. 181, 1212–1217 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Sudret, B., Mai, C.V.: Computing derivative-based global sensitivity measures using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 134, 241–250 (2015)CrossRefGoogle Scholar
  41. 41.
    Touzany, S., Busby, D.: Screening method using the derivative-based global sensitivity indices with application to reservoir simulator. Oil Gas Sci. Technol. Rev. IFP Energ. Nouvelles 69, 619–632 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Chemical EngineeringImperial College LondonLondonUK
  2. 2.Industrial Risk Management DepartmentEDF R&DChatouFrance
  3. 3.Institut de Mathématiques de ToulouseUniversité Paul SabatierToulouseFrance

Personalised recommendations