Skip to main content

Sampling via Measure Transport: An Introduction

  • Living reference work entry
  • First Online:
Handbook of Uncertainty Quantification

Abstract

We present the fundamentals of a measure transport approach to sampling. The idea is to construct a deterministic coupling – i.e., a transport map – between a complex “target” probability measure of interest and a simpler reference measure. Given a transport map, one can generate arbitrarily many independent and unweighted samples from the target simply by pushing forward reference samples through the map. If the map is endowed with a triangular structure, one can also easily generate samples from conditionals of the target measure. We consider two different and complementary scenarios: first, when only evaluations of the unnormalized target density are available and, second, when the target distribution is known only through a finite collection of samples. We show that in both settings, the desired transports can be characterized as the solutions of variational problems. We then address practical issues associated with the optimization-based construction of transports: choosing finite-dimensional parameterizations of the map, enforcing monotonicity, quantifying the error of approximate transports, and refining approximate transports by enriching the corresponding approximation spaces. Approximate transports can also be used to “Gaussianize” complex distributions and thus precondition conventional asymptotically exact sampling schemes. We place the measure transport approach in broader context, describing connections with other optimization-based samplers, with inference and density estimation schemes using optimal transport, and with alternative transformation-based approaches to simulation. We also sketch current work aimed at the construction of transport maps in high dimensions, exploiting essential features of the target distribution (e.g., conditional independence, low-rank structure). The approaches and algorithms presented here have direct applications to Bayesian computation and to broader problems of stochastic simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    See [61] for a discussion on the asymptotic equivalence of the K–L divergence and Hellinger distance in the context of transport maps.

  2. 2.

    The lexicographic order on \(\mathbb{R}^{n}\) is defined as follows. For \(x,y \in \mathbb{R}^{n}\), we define \(x\preceq y\) if and only if either x = y or the first nonzero coordinate in yx is positive [32]. \(\preceq\) is a total order on \(\mathbb{R}^{n}\). Thus, we define T to be a monotone increasing function if and only if \(x\preceq y\) implies \(T(x)\preceq T(y)\). Notice that monotonicity can be defined with respect to any order on \(\mathbb{R}^{n}\) (e.g., \(\preceq\) need not be the lexicographic order). There is no natural order on \(\mathbb{R}^{n}\) except when n = 1. It is easy to verify that for a triangular function T, monotonicity with respect to the lexicographic order is equivalent to the following: the kth component of T is a monotone function of the kth input variable.

  3. 3.

    Roots can be found using, for instance, Newton’s method. When a component of the inverse transport is parameterized using polynomials, however, then a more robust root-finding approach is to use a bisection method based on Sturm sequences (e.g., [63]).

References

  1. Adams, M.R., Guillemin, V.: Measure Theory and Probability. Birkhäuser Basel (1996)

    Google Scholar 

  2. Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. In: Benedetto, P., Michel, R. (eds) Modelling and Optimisation of Flows on Networks, pp. 1–155. Springer, Berlin/Heidelberg (2013)

    Chapter  Google Scholar 

  3. Andrieu, C., Moulines, E.: On the ergodicity properties of some adaptive MCMC algorithms. Ann. Appl. Probab. 16(3), 1462–1505 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Angenent, S., Haker, S., Tannenbaum, A.: Minimizing flows for the Monge–Kantorovich problem. SIAM J. Math. Anal. 35(1), 61–97 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atkins, E., Morzfeld, M., Chorin, A.J.: Implicit particle methods and their connection with variational data assimilation. Mon. Weather Rev. 141(6), 1786–1803 (2013)

    Article  Google Scholar 

  6. Attias, H.: Inferring parameters and structure of latent variable models by variational Bayes. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm, pp. 21–30. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  7. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser Basel (2013)

    Google Scholar 

  8. Bardsley, J.M., Solonen, A., Haario, H., Laine, M.: Randomize-then-optimize: a method for sampling from posterior distributions in nonlinear inverse problems. SIAM J. Sci. Comput. 36(4), A1895–A1910 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population genetics. Genetics 162(4), 2025–2035 (2002)

    Google Scholar 

  10. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bernard, P., Buffoni, B.: Optimal mass transportation and Mather theory. J. Eur. Math. Soc. 9, 85–121 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bigoni, D., Spantini, A., Marzouk, Y.: On the computation of monotone transports (2016, preprint)

    Google Scholar 

  13. Bonnotte, N.: From Knothe’s rearrangement to Brenier’s optimal transport map. SIAM J. Math. Anal. 45(1), 64–87 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Box, G., Cox, D.: An analysis of transformations. J. R. Stat. Soc. Ser. B 26(2), 211–252 (1964)

    MathSciNet  MATH  Google Scholar 

  15. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brooks, S., Gelman, A., Jones, G., Meng, X.L. (eds.): Handbook of Markov Chain Monte Carlo. Boca Raton (2011)

    Google Scholar 

  17. Calderhead, B.: A general construction for parallelizing Metropolis-Hastings algorithms. Proc. Natl. Acad. Sci. 111(49), 17408–17413 (2014)

    Article  Google Scholar 

  18. Carlier, G., Galichon, A., Santambrogio, F.: From Knothe’s transport to Brenier’s map and a continuation method for optimal transport. SIAM J. Math. Anal. 41(6), 2554–2576 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Champion, T., De Pascale, L.: The Monge problem in \(\mathbb{R}^{d}\). Duke Math. J. 157(3), 551–572 (2011)

    Google Scholar 

  20. Chib, S., Jeliazkov, I.: Marginal likelihood from the Metropolis-Hastings output. J. Am. Stat. Assoc. 96(453), 270–281 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chorin, A., Morzfeld, M., Tu, X.: Implicit particle filters for data assimilation. Commun. Appl. Math. Comput. Sci. 5(2), 221–240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chorin, A.J., Tu, X.: Implicit sampling for particle filters. Proc. Natl. Acad. Sci. 106(41), 17,249–17,254 (2009)

    Article  Google Scholar 

  23. Csilléry, K., Blum, M.G.B., Gaggiotti, O.E., François, O.: Approximate Bayesian computation (ABC) in practice. Trends Ecol. Evol. 25(7), 410–8 (2010)

    Article  Google Scholar 

  24. Cui, T., Law, K.J.H., Marzouk, Y.M.: Dimension-independent likelihood-informed MCMC. J. Comput. Phys. 304(1), 109–137 (2016)

    Article  MathSciNet  Google Scholar 

  25. Cui, T., Martin, J., Marzouk, Y.M., Solonen, A., Spantini, A.: Likelihood-informed dimension reduction for nonlinear inverse problems. Inverse Probl. 30(11), 114,015 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. R. Stat. Soc. B 68(3), 411–436 (2006)

    Google Scholar 

  27. Feyel, D., Üstünel, A.S.: Monge-Kantorovitch measure transportation and Monge-Ampere equation on Wiener space. Probab. Theory Relat. Fields 128(3), 347–385 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fox, C.W., Roberts, S.J.: A tutorial on variational Bayesian inference. Artif. Intell. Rev. 38(2), 85–95 (2012)

    Article  Google Scholar 

  29. Gautschi, W.: Orthogonal polynomials: applications and computation. Acta Numer. 5, 45–119 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. Chapman and Hall, Boca Raton (2003)

    MATH  Google Scholar 

  31. Gelman, A., Meng, X.L.: Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Stat. Sci. 13, 163–185 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ghorpade, S., Limaye, B.V.: A Course in Multivariable Calculus and Analysis. Springer, New York (2010)

    Book  MATH  Google Scholar 

  33. Gilks, W., Richardson, S., Spiegelhalter, D. (eds.): Markov Chain Monte Carlo in Practice. Chapman and Hall, London (1996)

    MATH  Google Scholar 

  34. Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. Ser. B 73, 1–37 (2011)

    Article  MathSciNet  Google Scholar 

  35. Goodman, J., Lin, K.K., Morzfeld, M.: Small-noise analysis and symmetrization of implicit Monte Carlo samplers. Commun. Pure Appl. Math. 2–4, n/a (2015)

    Google Scholar 

  36. Gorham, J., Mackey, L.: Measuring sample quality with Stein’s method. In: Advances in Neural Information Processing Systems, Montréal, Canada, pp. 226–234 (2015)

    Google Scholar 

  37. Haario, H., Saksman, E., Tamminen, J.: An adaptive metropolis algorithm. Bernoulli 7(2), 223–242 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Haber, E., Rehman, T., Tannenbaum, A.: An efficient numerical method for the solution of the L 2 optimal mass transfer problem. SIAM J. Sci. Comput. 32(1), 197–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Huan, X., Parno, M., Marzouk, Y.: Adaptive transport maps for sequential Bayesian optimal experimental design (2016, preprint)

    Google Scholar 

  40. Jaakkola, T.S., Jordan, M.I.: Bayesian parameter estimation via variational methods. Stat. Comput. 10(1), 25–37 (2000)

    Article  Google Scholar 

  41. Kim, S., Ma, R., Mesa, D., Coleman, T.P.: Efficient Bayesian inference methods via convex optimization and optimal transport. IEEE Symp. Inf. Theory 6, 2259–2263 (2013)

    Google Scholar 

  42. Kleywegt, A., Shapiro, A., Homem-de-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kushner, H., Yin, G.: Stochastic Approximation and Recursive Algorithms and Applications. Springer, New York (2003)

    MATH  Google Scholar 

  44. Laparra, V., Camps-Valls, G., Malo, J.: Iterative gaussianization: from ICA to random rotations. IEEE Trans. Neural Netw. 22(4), 1–13 (2011)

    Article  Google Scholar 

  45. Laurence, P., Pignol, R.J., Tabak, E.G.: Constrained density estimation. In: Quantitative Energy Finance, pp. 259–284. Springer, New York (2014)

    Google Scholar 

  46. Le Maitre, O., Knio, O.M.: Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Springer, Dordrecht/New York (2010)

    Book  MATH  Google Scholar 

  47. Litvinenko, A., Matthies, H.G.: Inverse Problems and Uncertainty Quantification. arXiv:1312.5048 (2013)

    Google Scholar 

  48. Litvinenko, A., Matthies, H.G.: Uncertainty quantification and non-linear Bayesian update of PCE coefficients. PAMM 13(1), 379–380 (2013)

    Article  Google Scholar 

  49. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2004)

    Book  Google Scholar 

  50. Loeper, G., Rapetti, F.: Numerical solution of the Monge–Ampère equation by a Newton’s algorithm. Comptes Rendus Math. 340(4), 319–324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1968)

    MATH  Google Scholar 

  52. Marin, J.M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian computational methods. Stat. Comput. 22(6), 1167–1180 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Martin, J., Wilcox, L., Burstedde, C., Ghattas, O.: A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion. SIAM J. Sci. Comput. 34(3), 1460–1487 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Matthies, H.G., Zander, E., Rosić, B.V., Litvinenko, A., Pajonk, O.: Inverse problems in a Bayesian setting. arXiv:1511.00524 (2015)

    Google Scholar 

  55. McCann, R.: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80(2), 309–323 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  56. Meng, X.L., Schilling, S.: Warp bridge sampling. J. Comput. Graph. Stat. 11(3), 552–586 (2002)

    Article  MathSciNet  Google Scholar 

  57. Monge, G.: Mémoire sur la théorie des déblais et de remblais. In: Histoire de l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, pp. 666–704 (1781)

    Google Scholar 

  58. Morzfeld, M., Chorin, A.J.: Implicit particle filtering for models with partial noise, and an application to geomagnetic data assimilation. arXiv:1109.3664 (2011)

    Google Scholar 

  59. Morzfeld, M., Tu, X., Atkins, E., Chorin, A.J.: A random map implementation of implicit filters. J. Comput. Phys. 231(4), 2049–2066 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Morzfeld, M., Tu, X., Wilkening, J., Chorin, A.: Parameter estimation by implicit sampling. Commun. Appl. Math. Comput. Sci. 10(2), 205–225 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Moselhy, T., Marzouk, Y.: Bayesian inference with optimal maps. J. Comput. Phys. 231(23), 7815–7850 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Neal, R.M.: MCMC using Hamiltonian dynamics. In: Brooks, S., Gelman, A., Jones, G.L., Meng, X.L. (eds.) Handbook of Markov Chain Monte Carlo, chap. 5, pp. 113–162. Taylor and Francis, Boca Raton (2011)

    Google Scholar 

  63. Parno, M.: Transport maps for accelerated Bayesian computation. Ph.D. thesis, Massachusetts Institute of Technology (2014)

    Google Scholar 

  64. Parno, M., Marzouk, Y.: Transport Map Accelerated Markov Chain Monte Carlo. arXiv:1412.5492 (2014)

    Google Scholar 

  65. Parno, M., Moselhy, T., Marzouk, Y.: A Multiscale Strategy for Bayesian Inference Using Transport Maps. arXiv:1507.07024 (2015)

    Google Scholar 

  66. Ramsay, J.: Estimating smooth monotone functions. J. R. Stat. Soc. Ser. B 60(2), 365–375 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  67. Reich, S.: A nonparametric ensemble transform method for Bayesian inference. SIAM J. Sci. Comput. 35(4), A2013–A2024 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  68. Renegar, J.: A Mathematical View of Interior-Point Methods in Convex Optimization, vol. 3. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  69. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York (2004)

    Book  MATH  Google Scholar 

  70. Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23(3), 470–472 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  71. Rosić, B.V., Litvinenko, A., Pajonk, O., Matthies, H.G.: Sampling-free linear Bayesian update of polynomial chaos representations. J. Comput. Phys. 231(17), 5761–5787 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  72. Saad, G., Ghanem, R.: Characterization of reservoir simulation models using a polynomial chaos-based ensemble Kalman filter. Water Resour. Res. 45(4), n/a (2009)

    Google Scholar 

  73. Smith, A., Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    Google Scholar 

  74. Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, vol. 65. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  75. Spantini, A., Marzouk, Y.: On the low-dimensional structure of measure transports (2016, preprint)

    Google Scholar 

  76. Spantini, A., Solonen, A., Cui, T., Martin, J., Tenorio, L., Marzouk, Y.: Optimal low-rank approximations of Bayesian linear inverse problems. SIAM J. Sci. Comput. 37(6), A2451–A2487 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  77. Stavropoulou, F., Müller, J.: Parameterization of random vectors in polynomial chaos expansions via optimal transportation. SIAM J. Sci. Comput. 37(6), A2535–A2557 (2015)

    Article  MATH  Google Scholar 

  78. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method, vol. 212. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  79. Stuart, A.M.: Inverse problems: a Bayesian perspective. Acta Numer. 19, 451–559 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  80. Sullivan, A.B., Snyder, D.M., Rounds, S.A.: Controls on biochemical oxygen demand in the upper Klamath River, Oregon. Chem. Geol. 269(1-2), 12–21 (2010)

    Article  Google Scholar 

  81. Tabak, E., Turner, C.V.: A family of nonparametric density estimation algorithms. Communications on Pure and Applied Mathematics 66(2), 145–164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  82. Tabak, E.G., Trigila, G.: Data-driven optimal transport. Commun. Pure Appl. Math. 10, 1002 (2014)

    MathSciNet  MATH  Google Scholar 

  83. Thode, H.C.: Testing for Normality, vol. 164. Marcel Dekker, New York (2002)

    Book  MATH  Google Scholar 

  84. Villani, C.: Topics in Optimal Transportation, vol. 58. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  85. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Berlin/Heidelberg (2008)

    MATH  Google Scholar 

  86. Wackernagel, H.: Multivariate Geostatistics: An Introduction with Applications. Springer-Verlag Berlin Heidelberg (2013)

    MATH  Google Scholar 

  87. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1(1–2), 1–305 (2008)

    MATH  Google Scholar 

  88. Wang, L.: Methods in Monte Carlo computation, astrophysical data analysis and hypothesis testing with multiply-imputed data. Ph.D. thesis, Harvard University (2015)

    Google Scholar 

  89. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  90. Wright, S.J., Nocedal, J.: Numerical Optimization, vol. 2. Springer, New York (1999)

    MATH  Google Scholar 

  91. Xiu, D., Karniadakis, G.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Marzouk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Marzouk, Y., Moselhy, T., Parno, M., Spantini, A. (2016). Sampling via Measure Transport: An Introduction. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-11259-6_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11259-6_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-11259-6

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics