Skip to main content

Validation of Physical Models in the Presence of Uncertainty

  • Living reference work entry
  • First Online:
Handbook of Uncertainty Quantification
  • 496 Accesses

Abstract

As the field of computational modeling continues to mature and simulation results are used to inform more critical decisions, validation of the physical models that form the basis of these simulations takes on increasing importance. While model validation is not a new concept, traditional techniques such as visual comparison of model outputs and experimental observations without accounting for uncertainties are insufficient for assessing model validity, particularly for the case where the intended purpose of the model is to make extrapolative predictions. This work provides an overview of validation of physical models in the presence of uncertainty. In particular, two issues are discussed: comparison of model outputs and observational data when both the model and observations are uncertain, and the process of building confidence in extrapolative predictions. For comparing uncertain model outputs and data, a Bayesian probabilistic perspective is adopted in which the problem of assessing the consistency of the model and the observations becomes one of Bayesian model checking. A broadly applicable approach to Bayesian model checking for physical models is described. For validating extrapolative predictions, a recently developed process termed predictive validation is discussed. This process relies on the ideas of Bayesian model checking but goes beyond comparison of model and data to assess the conditions necessary for reliable extrapolation using physics-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Adams, B.M., Ebeida, M.S., Eldred, M.S., Others: Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.2 User’s Manual. Sandia National Laboratories, Albuquerque (2014). https://dakota.sandia.gov/documentation.html

  2. AIAA Computational Fluid Dynamics Committee on Standards: AIAA Guide for Verification and Validation of Computational Fluid Dynamics Simulations. AIAA Paper number G-077-1999 (1998)

    Google Scholar 

  3. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79 (2010). doi:10.1214/09-SS054, http://dx.doi.org/10.1214/09-SS054

    Article  MathSciNet  MATH  Google Scholar 

  4. ASME Committee V&V 10: Standard for Verification and Validation in Computational Solid Mechanics. ASME (2006)

    Google Scholar 

  5. Babuška, I., Nobile, F., Tempone, R.: Reliability of computational science. Numer. Methods Partial Differ. Equ. 23(4), 753–784 (2007). doi:10.1002/num.20263

    Article  MathSciNet  MATH  Google Scholar 

  6. Box, G.E.P.: Sampling and Bayes’ inference in scientific modeling and robustness. R. Stat. Soc. Ser. A 143, 383–430 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Box, G., Tiao, G.C.: Bayesian Inference in Statistical Analysis. Wiley Classics, New York (1973)

    MATH  Google Scholar 

  8. Cox, R.T.: The Algebra of Probable Inference. Johns Hopkins University Press, Baltimore (1961)

    MATH  Google Scholar 

  9. Cui, T., Martin, J., Marzouk, Y.M., Solonen, A., Spantini, A.: Likelihood-informed dimension reduction for nonlinear inverse problems. Inverse Probl. 30(11), 114015 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  11. Ferson, S., Ginzburg, L.R.: Different methods are needed to propagate ignorance and variability. Reliab. Eng. Syst. Saf. 54, 133–144 (1996)

    Article  Google Scholar 

  12. Fine, T.L.: Theories of Probability. Academic, New York (1973)

    MATH  Google Scholar 

  13. Firm uses doe’s fastest supercomputer to streamline long-haul trucks. Office of Science, U.S. Department of Energy, Stories of Discovery and Innovation (2011). http://science.energy.gov/discovery-and-innovation/stories/2011/127008/

  14. Gelman, A.: Comment: ‘Bayesian checking of the second levels of hierarchical models’. Stat. Sci. 22, 349–352 (2007). doi:doi:10.1214/07-STS235A

    Google Scholar 

  15. Gelman, A., Rubin, D.B.: Avoiding model selection in Bayesian social research. Sociol. Methodol. 25, 165–173 (1995)

    Article  Google Scholar 

  16. Gelman, A., Shalizi, C.R.: Philosophy and the practice of Bayesian statistics. Br. J. Math. Stat. Psychol. 66(1), 8–38 (2013)

    Article  MathSciNet  Google Scholar 

  17. Gelman, A., Meng, X.L., Stern, H.: Posterior predictive assessment of medel fitness via realized discrepancies. Statistica Sinica 6, 733–807 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis, 3rd edn. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

  19. Hsu, J.: Multiple Comparisons: Theory and Methods. Chapman and Hall/CRC, London (1996)

    Book  MATH  Google Scholar 

  20. Hyndman, R.J.: Computing and graphing highest density regions. Am. Stat. 50(2), 120–126 (1996)

    MathSciNet  Google Scholar 

  21. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge/New York (2003)

    Book  MATH  Google Scholar 

  22. Kanji, G.K.: 100 Statistical Tests, 3rd edn. Sage Publications, London/Thousand Oaks (2006)

    Google Scholar 

  23. Le Maıtre, O., Knio, O., Najm, H., Ghanem, R.: Uncertainty propagation using wiener–haar expansions. J. Comput. Phys. 197(1), 28–57 (2004)

    Google Scholar 

  24. Li, J., Marzouk, Y.M.: Adaptive construction of surrogates for the Bayesian solution of inverse problems. SIAM J. Sci. Comput. 36(3), A1163–A1186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miller, R.G.J.: Simultaneous Statistical Inference, 2nd edn. Springer, New York (1981)

    Book  MATH  Google Scholar 

  26. Miller, L.K.: Simulation-based engineering for industrial competitive advantage. Comput. Sci. Eng. 12(3), 14–21 (2010). doi:10.1109/MCSE.2010.71

    Article  Google Scholar 

  27. Najm, H.N.: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 41, 35–52 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oberkampf, W.L., Helton, J.C., Sentz, K.: Mathematical representation of uncertainty. AIAA 2001-1645

    Google Scholar 

  29. Oden, J.T., Belytschko, T., Fish, J., Hughes, T.J.R., Johnson, C., Keyes, D., Laub, A., Petzold, L., Srolovitz, D., Yip, S.: Revolutionizing engineering science through simulation: a report of the National Science Foundation blue ribbon panel on simulation-based engineering science (2006). http://www.nsf.gov/pubs/reports/sbes_final_report.pdf

    Google Scholar 

  30. Oliver, T.A., Terejanu, G., Simmons, C.S., Moser, R.D.: Validating predictions of unobserved quantities. Comput. Methods Appl. Mech. Eng. 283, 1310–1335 (2015). doi:http://dx.doi.org/10.1016/j.cma.2014.08.023, http://www.sciencedirect.com/science/article/pii/S004578251400293X

  31. Petra, N., Martin, J., Stadler, G., Ghattas, O.: A computational framework for infinite-dimensional Bayesian inverse problems, Part II: stochastic Newton mcmc with application to ice sheet flow inverse problems. SIAM J. Sci. Comput. 36(4), A1525–A1555 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Rubin, D.B.: Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Stat. 12, 1151–1172 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sentz, K., Ferson, S.: Combination of evidence in Dempster–Shafer theory. Technical report SAND 2002-0835, Sandia National Laboratory (2002)

    Google Scholar 

  34. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  35. Van Horn, K.S.: Constructing a logic of plausible inference: a guide to Cox’s theorem. Int. J. Approx. Reason. 34(1), 3–24 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Moser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Moser, R., Oliver, T. (2015). Validation of Physical Models in the Presence of Uncertainty. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-11259-6_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11259-6_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-11259-6

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics