Skip to main content

Bayesian Uncertainty Propagation Using Gaussian Processes

  • Living reference work entry
  • First Online:
Handbook of Uncertainty Quantification

Abstract

Classic non-intrusive uncertainty propagation techniques, typically, require a significant number of model evaluations in order to yield convergent statistics. In practice, however, the computational complexity of the underlying computer codes limits significantly the number of observations that one can actually make. In such situations the estimates produced by classic approaches cannot be trusted since the limited number of observations induces additional epistemic uncertainty. The goal of this chapter is to highlight how the Bayesian formalism can quantify this epistemic uncertainty and provide robust predictive intervals for the statistics of interest with as few simulations as one has available. It is shown how the Bayesian formalism can be materialized by employing the concept of a Gaussian process (GP). In addition, several practical aspects that depend on the nature of the underlying response surface, such as the treatment of spatiotemporal variation, and multi-output responses are discussed. The practicality of the approach is demonstrated by propagating uncertainty through a dynamical system and an elliptic partial differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Aarnes, J.E., Kippe, V., Lie, K.A., Rustad, A.B.: Modelling of multiscale structures in flow simulations for petroleum reservoirs. In: Hasle, G., Lie, K.A., Quak, E. (eds.): Geometric Modelling, Numerical Simulation, and Optimization, chap. 10, pp. 307–360. Springer, Berlin/Heidelberg (2007). doi:10.1007/978-3-540-68783-2_10

    Google Scholar 

  2. Alvarez, M., Lawrence, N.D.: Sparse convolved Gaussian processes for multi-output regression. In: Koller, D., Schuurmans, D., Bengio, Y., and Bottou. L. (eds.): Advances in Neural Information Processing Systems 21 (NIPS 2008), Vancouver, B.C., Canada (2008)

    Google Scholar 

  3. Alvarez, M., Luengo-Garcia, D., Titsias, M., Lawrence, N.: Efficient multioutput Gaussian processes through variational inducing kernels. In: Ft. Lauderdale, FL, USA (2011)

    Google Scholar 

  4. Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Betz, W., Papaioannou, I., Straub, D.: Numerical methods for the discretization of random fields by means of the Karhunen-Loeve expansion. Comput. Methods Appl. Mech. Eng. 271, 109–129 (2014). doi:10.1016/j.cma.2013.12.010

    Article  MathSciNet  MATH  Google Scholar 

  6. Bilionis, I.: py-orthpol: Construct orthogonal polynomials in python. https://github.com/PredictiveScienceLab/py-orthpol (2013)

  7. Bilionis, I., Zabaras, N.: Multi-output local Gaussian process regression: applications to uncertainty quantification. J. Comput. Phys. 231(17), 5718–5746 (2012) doi:10.1016/J.Jcp.2012.04.047

    Article  MathSciNet  MATH  Google Scholar 

  8. Bilionis, I., Zabaras, N.: Multidimensional adaptive relevance vector machines for uncertainty quantification. SIAM J. Sci. Comput. 34(6), B881–B908 (2012). doi:10.1137/120861345

    Article  MathSciNet  MATH  Google Scholar 

  9. Bilionis, I., Zabaras, N.: Solution of inverse problems with limited forward solver evaluations: a Bayssian perspective. Inverse Probl. 30(1), Artn 015004 (2014). doi:10.1088/0266-5611/30/1/015004

    Google Scholar 

  10. Bilionis, I., Zabaras, N., Konomi, B.A., Lin, G.: Multi-output separable Gaussian process: towards an efficient, fully Bayesian paradigm for uncertainty quantification. J. Comput. Phys. 241, 212–239 (2013). doi:10.1016/J.Jcp.2013.01.011

    Article  Google Scholar 

  11. Bilionis, I., Drewniak, B.A., Constantinescu, E.M.: Crop physiology calibration in the CLM. Geoscientific Model Dev. 8(4), 1071–1083 (2015). doi:10.5194/gmd-8-1071-2015, http://www.geosci-model-dev.net/8/1071/2015 http://www.geosci-model-dev.net/8/1071/2015/gmd-8-1071-2015.pdf, gMD http://www.geosci-model-dev.net/8/1071/2015/gmd-8-1071-2015.pdf

  12. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  13. Boyle, P., Frean, M.: Dependent Gaussian processes. In: Saul, L.K., Weiss, Y., and Bottou L. (eds.): Advances in Neural Information Processing Systems 17 (NIPS 2004), Whistler, B.C., Canada (2004)

    Google Scholar 

  14. Chen, P., Zabaras, N., Bilionis, I.: Uncertainty propagation using infinite mixture of Gaussian processes and variational Bayssian inference. J. Comput. Phys. 284, 291–333 (2015)

    Article  MathSciNet  Google Scholar 

  15. Conti, S., O’Hagan, A.: Bayesian emulation of complex multi-output and dynamic computer models. J. Stat. Plan. Inference 140(3), 640–651 (2010). doi:10.1016/J.Jspi.2009.08.006

    Article  MathSciNet  MATH  Google Scholar 

  16. Currin, C., Mitchell, T., Morris, M., Ylvisaker, D.: A Bayesian approach to the design and analysis of computer experiments. Report, Oak Ridge Laboratory (1988)

    Book  Google Scholar 

  17. Currin, C., Mitchell, T., Morris, M., Ylvisaker, D.: Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. J. Am. Stat. Assoc. 86(416), 953–963 (1991). doi:10.2307/2290511

    Article  MathSciNet  Google Scholar 

  18. Dawid, A.P.: Some matrix-variate distribution theory – notational considerations and a Bayesian application. Biometrika 68(1), 265–274 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B. (Stat. Methodol.) 68(3), 411–436 (2006)

    Google Scholar 

  20. Delves, L.M., Walsh, J.E., of Manchester Department of Mathematics, U., of Computational LUD, Science, S.: Numerical Solution of Integral Equations. Clarendon Press, Oxford (1974)

    Google Scholar 

  21. Doucet, A., De Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice (Statistics for Engineering and Information Science). Springer, New York (2001)

    Google Scholar 

  22. Durrande, N., Ginsbourger, D., Roustant, O.: Additive covariance kernels for high-dimensional Gaussian process modeling. arXiv:11116233 (2011)

    Google Scholar 

  23. Duvenaud, D., Nickisch, H., Rasmussen, C.E.: Additive Gaussian processes. In: Advances in Neural Information Processing Systems, vol. 24, pp. 226–234 (2011)

    Google Scholar 

  24. Gautschi, W.: On generating orthogonal polynomials. SIAM J. Sci. Stat. Comput. 3(3), 289–317 (1982). doi:10.1137/0903018

    Article  MathSciNet  MATH  Google Scholar 

  25. Gautschi, W.: Algorithm-726 – ORTHPOL – a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Softw. 20(1), 21–62 (1994) doi:10.1145/174603.174605

    Article  MATH  Google Scholar 

  26. Ghanem, R., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach, rev. edn. Dover Publications, Minneola (2003)

    Google Scholar 

  27. Gramacy, R.B., Lee, H.K.H.: Cases for the nugget in modeling computer experiments. Stat. Comput. 22(3), 713–722 (2012) doi:10.1007/s11222-010-9224-x

    Article  MathSciNet  MATH  Google Scholar 

  28. Haff, L.: An identity for the Wishart distribution with applications. J. Multivar. Anal. 9(4), 531–544 (1979). doi:http://dx.doi.org/10.1016/0047-259X(79)90056-3

    Google Scholar 

  29. Hastings, W.K.: Monte-Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970). doi:10.2307/2334940

    Article  MathSciNet  MATH  Google Scholar 

  30. Higdon, D., Gattiker, J., Williams, B., Rightley, M.: Computer model calibration using high-dimensional output. J. Am. Stat. Assoc. 103(482), 570–583 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer Series in Statistics. Springer, New York (2001)

    MATH  Google Scholar 

  32. Loève, M.: Probability Theory, 4th edn. Graduate Texts in Mathematics. Springer, New York (1977)

    MATH  Google Scholar 

  33. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953). doi:10.1063/1.1699114

    Article  Google Scholar 

  34. Oakley, J., O’Hagan, A.: Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika 89(4), 769–784 (2002)

    Article  Google Scholar 

  35. Oakley, J.E., O’Hagan, A.: Probabilistic sensitivity analysis of complex models: a Bayesian approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 66, 751–769 (2004). doi:10.1111/j.1467-9868.2004.05304.x

    Article  MathSciNet  MATH  Google Scholar 

  36. O’Hagan, A.: Bayes-Hermite quadrature. J. Stat. Plan. Inference 29(3), 245–260 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. O’Hagan, A., Kennedy, M.: Gaussian emulation machine for sensitivity analysis (GEM-SA) (2015). http://www.tonyohagan.co.uk/academic/GEM/

    Google Scholar 

  38. O’Hagan, A., Kennedy, M.C., Oakley, J.E.: Uncertainty analysis and other inference tools for complex computer codes. Bayesian Stat. 6, 503–524 (1999)

    MathSciNet  MATH  Google Scholar 

  39. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  40. Reinhardt, H.J.: Analysis of Approximation Methods for Differential and Integral Equations. Applied Mathematical Sciences. Springer, New York (1985)

    Book  MATH  Google Scholar 

  41. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer Texts in Statistics. Springer, New York (2004)

    Book  MATH  Google Scholar 

  42. Sacks, J., Welch, W.J., Mitchell, T., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  43. Seeger, M.: Low rank updates for the Cholesky decomposition. Report, University of California at Berkeley (2007)

    Google Scholar 

  44. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov. Math. Dokl. 4, 240–243 (1963)

    MATH  Google Scholar 

  45. Stark, H., Woods, J.W., Stark, H.: Probability and Random Processes with Applications to Signal Processing, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  46. Stegle, O., Lippert, C., Mooij, J.M., Lawrence, N.D., Borgwardt, K.M.: Efficient inference in matrix-variate Gaussian models with backslash iid observation noise. In: Shawe-Taylor, J., Zemel, R.S., Barlett, P.L., Pereira, F., Weinberger K.Q. (eds.): Advances in Neural Information Processing Systems 24 (NIPS 2011), Granada, Spain (2011)

    Google Scholar 

  47. Van Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123(1–2), 85–100 (2000)

    Google Scholar 

  48. Wan, J., Zabaras, N.: A Bayssian approach to multiscale inverse problems using the sequential Monte Carlo method. Inverse Probl. 27(10), 105004 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wan, X.L., Karniadakis, G.E.: An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 209(2), 617–642 (2005). doi:10.1016/j.jcp.2005.03.023, <GotoISI>://WOS:000230736700011

    Google Scholar 

  50. Welch, W.J., Buck, R.J., Sacks, J., Wynn, H.P., Mitchell, T.J., Morris, M.D.: Screening, predicting, and computer experiments. Technometrics 34(1), 15–25 (1992)

    Article  Google Scholar 

  51. Xiu, D.B.: Efficient collocational approach for parametric uncertainty analysis. Commun. Comput. Phys. 2(2), 293–309 (2007)

    MathSciNet  MATH  Google Scholar 

  52. Xiu, D.B., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Xiu, D.B., Karniadakis, G.E.: The wiener-askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilias Bilionis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Bilionis, I., Zabaras, N. (2015). Bayesian Uncertainty Propagation Using Gaussian Processes. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-11259-6_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11259-6_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-11259-6

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics