Skip to main content

Gut Microbiome, Obesity, and Metabolic Syndrome

  • Reference work entry
  • First Online:
Metabolic Syndrome

Abstract

Obesity, metabolic syndrome, and type 2 diabetes (T2D) reflect a major disease burden throughout the world. In all these disorders, low-grade chronic inflammation is commonly observed. The origin of this type of inflammation is currently unknown. Recent studies, however, suggest that the gastrointestinal tract with its enormous microbial world, i.e., the intestinal microbiota, could not only play a role in these disorders but also contribute to low-grade chronic inflammation. This microbiota affects many biological functions throughout the body including many immune and metabolic features. Data from animal models and humans support that obesity and associated disorders are characterized by a profound dysbiosis. Human metagenome-wide association studies mainly in obesity and T2D have demonstrated that there exists a “gut microbiota signature.” Further, evidence for a major role of intestinal bacteria has been derived from studies in pregnancy and after Caesarean section. Antibiotic use in early life also affects the microbiota in a profound manner and might contribute to the development of childhood obesity and T2D in later life. Therefore, as a “gut” signature became evident in the last years in these diseases, a better understanding of these aspects is mandatory to gain further insights and define a basis for new therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

FFAR:

Free fatty acid receptor

Fiaf:

Fasting-induced adipose factor

FXR:

Farnesoid X receptor

GLP-1:

Glucagon-like peptide 1

GPCR:

G-protein-coupled receptor

HFD:

High-fat diet

HGC:

High gene count

ILC:

Innate lymphoid cells

LGC:

Low gene count

LPL:

Lipoprotein lipase

MLG:

Metagenomic linkage group

SCFA:

Short-chain fatty acid

T2D:

Type 2 diabetes

TLR5:

Toll-like receptor 5

References

  • Ajslev TA, Andersen CS, Gamborg M, et al. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes. 2011;35:522-529.

    Article  CAS  Google Scholar 

  • Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011;3:559-572.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Antonopoulos DA, Huse SM, Morrison HG, et al. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun. 2009;77:2367-2375.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451-455.

    Article  CAS  PubMed  Google Scholar 

  • Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718-15723.

    Article  PubMed Central  PubMed  Google Scholar 

  • Backhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104:979-984.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biasucci G, Rubini M, Riboni S, et al. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev. 2010;86(Suppl 1):13-15.

    Article  PubMed  Google Scholar 

  • Bischoff SC, Barbara G, Buurman W, et al. Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189.

    Article  PubMed Central  PubMed  Google Scholar 

  • Blustein J, Attina T, Liu M, et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int J Obes. 2013;37:900-906.

    Article  CAS  Google Scholar 

  • Breen DM, Rasmussen BA, Cote CD, et al. Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes. Diabetes. 2013;62:3005-3013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278:11312-11319.

    Article  CAS  PubMed  Google Scholar 

  • Burcelin R. Regulation of metabolism: a cross talk between gut microbiota and its human host. Physiology. 2012;27:300-307.

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761-1772.

    Article  CAS  PubMed  Google Scholar 

  • Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621-626.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coates ME, Fuller R, Harrison GF, et al. A comparison of the growth of chicks in the Gustafsson germ-free apparatus and in a conventional environment, with and without dietary supplements of penicillin. Br J Nutr. 1963;17:141-150.

    Article  CAS  PubMed  Google Scholar 

  • Collado MC, Isolauri E, Laitinen K, et al. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 2008;88:894-899.

    CAS  PubMed  Google Scholar 

  • Colonna M. Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity. Immunity. 2009;31:15-23.

    Article  CAS  PubMed  Google Scholar 

  • Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694-1697.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585-588.

    Article  CAS  PubMed  Google Scholar 

  • Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705-721.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cromwell GL. Why and how antibiotics are used in swine production. Anim Biotechnol. 2002;13:7-27.

    Article  PubMed  Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691-14696.

    Article  PubMed Central  PubMed  Google Scholar 

  • Derrien M, Vaughan EE, Plugge CM, et al. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54:1469-1476.

    Article  CAS  PubMed  Google Scholar 

  • Dethlefsen L, Huse S, Sogin ML, et al. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008;6, e280.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dewulf EM, Cani PD, Claus SP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013;62:1112-1121.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107:11971-11975.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dubos R, Schaedler RW, Costello RL. The effect of antibacterial drugs on the weight of mice. J Exp Med. 1963;117:245-257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes. 2008;32:1720-1724.

    Article  CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635-1638.

    Article  PubMed Central  PubMed  Google Scholar 

  • Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60:2775-2786.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110:9066-9071.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flint HJ, Bayer EA, Rincon MT, et al. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol. 2008;6:121-131.

    Article  CAS  PubMed  Google Scholar 

  • Greenwood MR, Hirsch J. Postnatal development of adipocyte cellularity in the normal rat. J Lipid Res. 1974;15:474-483.

    CAS  PubMed  Google Scholar 

  • Hansen CH, Krych L, Nielsen DS, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 2012;55:2285-2294.

    Article  CAS  PubMed  Google Scholar 

  • Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179-185.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huh SY, Rifas-Shiman SL, Zera CA, et al. Delivery by caesarean section and risk of obesity in preschool age children: a prospective cohort study. Arch Dis Child. 2012;97:610-616.

    Article  PubMed Central  PubMed  Google Scholar 

  • Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207-214.

    Article  Google Scholar 

  • Huurre A, Kalliomaki M, Rautava S, et al. Mode of delivery – effects on gut microbiota and humoral immunity. Neonatology. 2008;93:236-240.

    Article  PubMed  Google Scholar 

  • Kang CS, Ban M, Choi EJ, et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS One. 2013;8, e76520.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karlsson CL, Onnerfalt J, Xu J, et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity. 2012;20:2257-2261.

    Article  PubMed  Google Scholar 

  • Karlsson F, Tremaroli V, Nielsen J, et al. Assessing the human gut microbiota in metabolic diseases. Diabetes. 2013a;62:3341-3349.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013b;498:99-103.

    Article  CAS  PubMed  Google Scholar 

  • Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.

    Article  PubMed Central  PubMed  Google Scholar 

  • Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150:470-480.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541-546.

    Article  PubMed  Google Scholar 

  • Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003;278:25481-25489.

    Article  PubMed  Google Scholar 

  • Lepage P, Leclerc MC, Joossens M, et al. A metagenomic insight into our gut’s microbiome. Gut. 2013;62:146-158.

    Article  PubMed  Google Scholar 

  • Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070-11075.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022-1023.

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye R, Pei L, et al. Caesarean delivery, caesarean delivery on maternal request and childhood overweight: a Chinese birth cohort study of 181 380 children. Pediatr Obes. 2014;9:10-16.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Lu L, Yao P, et al. Lipopolysaccharide binding protein, obesity status and incidence of metabolic syndrome: a prospective study among middle-aged and older Chinese. Diabetologia. 2014;57:1834-1841.

    Article  CAS  PubMed  Google Scholar 

  • Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220-230.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morgun A, Dzutsev A, Dong X, et al. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut. 2015.

    Google Scholar 

  • Mukhopadhya I, Hansen R, El-Omar EM, et al. IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol. 2012;9:219-230.

    Article  CAS  PubMed  Google Scholar 

  • Pandey PK, Verma P, Kumar H, et al. Comparative analysis of fecal microflora of healthy full-term Indian infants born with different methods of delivery (vaginal vs cesarean): Acinetobacter sp. prevalence in vaginally born infants. J Biosci. 2012;37:989-998.

    Article  PubMed  Google Scholar 

  • Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59-65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55-60.

    Article  CAS  PubMed  Google Scholar 

  • Remely M, Tesar I, Hippe B, et al. Gut microbiota composition correlates with changes in body fat content due to weight loss. Benef Microbes. 2015;6:431-439.

    Article  CAS  PubMed  Google Scholar 

  • Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.

    Article  PubMed  Google Scholar 

  • Robertson MD, Currie JM, Morgan LM, et al. Prior short-term consumption of resistant starch enhances postprandial insulin sensitivity in healthy subjects. Diabetologia. 2003;46:659-665.

    CAS  PubMed  Google Scholar 

  • Robertson MD, Bickerton AS, Dennis AL, et al. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr. 2005;82:559-567.

    CAS  PubMed  Google Scholar 

  • Santacruz A, Collado MC, Garcia-Valdes L, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010;104:83-92.

    Article  CAS  PubMed  Google Scholar 

  • Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18:190-195.

    Article  PubMed  Google Scholar 

  • Shanahan F. The gut microbiota-a clinical perspective on lessons learned. Nat Rev Gastroenterol Hepatol. 2012;9:609-614.

    Article  CAS  PubMed  Google Scholar 

  • Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63:727-735.

    Article  CAS  PubMed  Google Scholar 

  • Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569-573.

    Article  CAS  PubMed  Google Scholar 

  • Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105:16731-16736.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stienstra R, Joosten LA, Koenen T, et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab. 2010;12:593-605.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sugimoto K, Ogawa A, Mizoguchi E, et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest. 2008;118:534-544.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Swann JR, Want EJ, Geier FM, et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4523-4530.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tilg H. Diet and intestinal immunity. N Engl J Med. 2012;366:181-183.

    Article  CAS  PubMed  Google Scholar 

  • Tilg H, Kaser A. Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest. 2011;121:2126-2132.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut. 2014;63:1513-1521.

    Article  CAS  PubMed  Google Scholar 

  • Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61:364-371.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trasande L, Blustein J, Liu M, et al. Infant antibiotic exposures and early-life body mass. Int J Obes. 2013;37:16-23.

    Article  CAS  Google Scholar 

  • Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242-249.

    Article  CAS  PubMed  Google Scholar 

  • Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159-166.

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027-1031.

    Article  PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480-484.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328:228-231.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Ota N, Manzanillo P, et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature. 2014;514:237-241.

    CAS  PubMed  Google Scholar 

  • Wang J, Tang H, Zhang C, et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J. 2015;9:1-15.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105-108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang L, Zhang Y, Wang L, et al. Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22. J Hepatol. 2010;53:339-347.

    Article  CAS  PubMed  Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222-227.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoon JC, Chickering TW, Rosen ED, et al. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol. 2000;20:5343-5349.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng Y, Valdez PA, Danilenko DM, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med. 2008;14:282-289.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Tilg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Tilg, H., Moschen, A.R. (2016). Gut Microbiome, Obesity, and Metabolic Syndrome. In: Ahima, R.S. (eds) Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-11251-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11251-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11250-3

  • Online ISBN: 978-3-319-11251-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics