Skip to main content

Carbohydrate, Fat, and Protein Metabolism in Obesity

  • Reference work entry
  • First Online:
Metabolic Syndrome

Abstract

Macronutrient metabolism is essential for transferring energy contained in food to usable forms of cellular energy. The balance between energy fuels flowing to cells and being released as cellular work will determine the body size. In the last decades, energy homeostasis has been challenged by an overwhelming macronutrient availability that imposes a need for further expansion of adipose mass. The capacity to handle such higher energy and macronutrient fluxes will determine metabolic disturbances (e.g., insulin resistance) at tissue and whole organism level. Herein, we reviewed carbohydrate, fat, and protein metabolism with special emphasis to the comparison between lean and obese individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • A Report of the Panel on Macronutrients, S. o. U. R. L. o. N. a. I. a. U. o. D. R. I.; the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, ed. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press; 2002.

    Google Scholar 

  • Aarsland A, Wolfe RR. Hepatic secretion of VLDL fatty acids during stimulated lipogenesis in men. J Lipid Res. 1998;39(6):1280-1286.

    CAS  PubMed  Google Scholar 

  • Abbott WG, Howard BV, et al. Short-term energy balance: relationship with protein, carbohydrate, and fat balances. Am J Physiol. 1988;255(3 Pt 1):E332-E337.

    CAS  PubMed  Google Scholar 

  • Acheson KJ, Schutz Y, et al. Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. Am J Clin Nutr. 1988;48(2):240-247.

    CAS  PubMed  Google Scholar 

  • Adeva-Andany M, Lopez-Ojen M, et al. Comprehensive review on lactate metabolism in human health. Mitochondrion. 2014;17:76-100.

    Article  CAS  PubMed  Google Scholar 

  • Adiels M, Taskinen MR, et al. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia. 2006;49(4):755-765.

    Article  CAS  PubMed  Google Scholar 

  • Allenberg K, Nilsson M, et al. Glycogen and lactate synthetic pathways in human skeletal muscle in relation to obesity, weight reduction and physical training. Eur J Clin Invest. 1988;18(3):250-255.

    Article  CAS  PubMed  Google Scholar 

  • Anastasiou CA, Kavouras SA, et al. Diabetes mellitus is associated with increased intramyocellular triglyceride, but not diglyceride, content in obese humans. Metabolism. 2009;58(11):1636-1642.

    Article  CAS  PubMed  Google Scholar 

  • Badin PM, Louche K, et al. Altered skeletal muscle lipase expression and activity contribute to insulin resistance in humans. Diabetes. 2011;60(6):1734-1742.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Badin PM, Langin D, et al. Dynamics of skeletal muscle lipid pools. Trends Endocrinol Metab. 2013;24(12):607-615.

    Article  CAS  PubMed  Google Scholar 

  • Baron AD, Brechtel G, et al. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol. 1988;255(6 Pt 1):E769-E774.

    CAS  PubMed  Google Scholar 

  • Baron AD, Laakso M, et al. Reduced postprandial skeletal muscle blood flow contributes to glucose intolerance in human obesity. J Clin Endocrinol Metab. 1990;70(6):1525-1533.

    Article  CAS  PubMed  Google Scholar 

  • Bergman BC, Butterfield GE, et al. Evaluation of exercise and training on muscle lipid metabolism. Am J Physiol. 1999;276(1 Pt 1):E106-E117.

    CAS  PubMed  Google Scholar 

  • Bonadonna RC, Groop L, et al. Obesity and insulin resistance in humans: a dose–response study. Metabolism. 1990;39(5):452-459.

    Article  CAS  PubMed  Google Scholar 

  • Bonen A, Parolin ML, et al. Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J. 2004;18(10):1144-1146.

    CAS  PubMed  Google Scholar 

  • Bonen A, Chabowski A, et al. Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical, and physiological evidence. Physiology (Bethesda). 2007;22:15-29.

    CAS  Google Scholar 

  • Bonuccelli S, Muscelli E, et al. Improved tolerance to sequential glucose loading (Staub-Traugott effect): size and mechanisms. Am J Physiol Endocrinol Metab. 2009;297(2):E532-E537.

    Article  CAS  PubMed  Google Scholar 

  • Bosy-Westphal A, Kossel E, et al. Contribution of individual organ mass loss to weight loss-associated decline in resting energy expenditure. Am J Clin Nutr. 2009;90(4):993-1001.

    Article  CAS  PubMed  Google Scholar 

  • Bray GA, Popkin BM. Dietary sugar and body weight: have we reached a crisis in the epidemic of obesity and diabetes? Health be damned! Pour on the sugar. Diabetes Care. 2014;37(4):950-956.

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT. Comments on metabolic needs for glucose and the role of gluconeogenesis. Eur J Clin Nutr. 1999;53(Suppl 1):S107-S111.

    Article  PubMed  Google Scholar 

  • Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114(2):147-152.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bruce AC, McNurlan MA, et al. Nutrient oxidation patterns and protein metabolism in lean and obese subjects. Int J Obes. 1990;14(7):631-646.

    CAS  PubMed  Google Scholar 

  • Caballero B, Wurtman RJ. Differential effects of insulin resistance on leucine and glucose kinetics in obesity. Metabolism. 1991;40(1):51-58.

    Article  CAS  PubMed  Google Scholar 

  • Cahill GF Jr. Fuel metabolism in starvation. Annu Rev Nutr. 2006;26:1-22.

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy MV, Lodhi IJ, et al. Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell. 2009;138(3):476-488.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chevalier S, Marliss EB, et al. Whole-body protein anabolic response is resistant to the action of insulin in obese women. Am J Clin Nutr. 2005;82(2):355-365.

    CAS  PubMed  Google Scholar 

  • Chevalier S, Burgess SC, et al. The greater contribution of gluconeogenesis to glucose production in obesity is related to increased whole-body protein catabolism. Diabetes. 2006;55(3):675-681.

    Article  CAS  PubMed  Google Scholar 

  • Chondrogianni N, Petropoulos I, et al. Protein damage, repair and proteolysis. Mol Aspects Med. 2014;35:1-71.

    Article  CAS  PubMed  Google Scholar 

  • Cline GW, Petersen KF, et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med. 1999;341(4):240-246.

    Article  CAS  PubMed  Google Scholar 

  • Coburn CT, Knapp FF Jr, et al. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem. 2000;275(42):32523-32529.

    Article  CAS  PubMed  Google Scholar 

  • Coen PM, Goodpaster BH. Role of intramyocelluar lipids in human health. Trends Endocrinol Metab. 2012;23(8):391-398.

    Article  CAS  PubMed  Google Scholar 

  • Despres JP. The insulin resistance-dyslipidemic syndrome of visceral obesity: effect on patients’ risk. Obes Res. 1998;6(Suppl 1):8S-17S.

    Article  PubMed  Google Scholar 

  • Dohm GL, Tapscott EB, et al. An in vitro human muscle preparation suitable for metabolic studies. Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects. J Clin Invest. 1988;82(2):486-494.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunn JP, Abumrad NN, et al. Hepatic and peripheral insulin sensitivity and diabetes remission at 1 month after Roux-en-Y gastric bypass surgery in patients randomized to omentectomy. Diabetes Care. 2012;35(1):137-142.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162-184.

    Article  CAS  PubMed  Google Scholar 

  • Everman S, Mandarino LJ, et al. Effects of acute exposure to increased plasma branched-chain amino acid concentrations on insulin-mediated plasma glucose turnover in healthy young subjects. PLoS One. 2015;10(3):e0120049.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fabbrini E, Magkos F, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A. 2009;106(36):15430-15435.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fabbrini E, Tamboli RA, et al. Surgical removal of omental fat does not improve insulin sensitivity and cardiovascular risk factors in obese adults. Gastroenterology. 2010;139(2):448-455.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferrannini E, Bjorkman O, et al. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes. 1985;34(6):580-588.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LD, Pulawa LK, et al. Overexpressing human lipoprotein lipase in mouse skeletal muscle is associated with insulin resistance. Diabetes. 2001;50(5):1064-1068.

    Article  CAS  PubMed  Google Scholar 

  • Frayn KN. Adipose tissue as a buffer for daily lipid flux. Diabetologia. 2002;45(9):1201-1210.

    Article  CAS  PubMed  Google Scholar 

  • Galgani JE, Ravussin E. Postprandial whole-body glycolysis is similar in insulin-resistant and insulin-sensitive non-diabetic humans. Diabetologia. 2012;55(3):737-742.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galgani JE, Heilbronn LK, et al. Metabolic flexibility in response to glucose is not impaired in people with type 2 diabetes after controlling for glucose disposal rate. Diabetes. 2008a;57(4):841-845.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galgani JE, Moro C, et al. Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab. 2008b;295(5):E1009-E1017.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galgani JE, Vasquez K, et al. Enhanced skeletal muscle lipid oxidative efficiency in insulin-resistant vs insulin-sensitive nondiabetic, nonobese humans. J Clin Endocrinol Metab. 2013;98(4):E646-E653.

    Article  CAS  PubMed  Google Scholar 

  • Gan SK, Samaras K, et al. Altered myocellular and abdominal fat partitioning predict disturbance in insulin action in HIV protease inhibitor-related lipodystrophy. Diabetes. 2002;51(11):3163-3169.

    Article  CAS  PubMed  Google Scholar 

  • Gavrilova O, Haluzik M, et al. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem. 2003;278(36):34268-34276.

    Article  CAS  PubMed  Google Scholar 

  • Glatz JF, Luiken JJ, et al. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev. 2010;90(1):367-417.

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith R, Joanisse DR, et al. Effects of experimental weight perturbation on skeletal muscle work efficiency, fuel utilization, and biochemistry in human subjects. Am J Physiol Regul Integr Comp Physiol. 2010;298(1):R79-R88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goodpaster BH, He J, et al. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab. 2001;86(12):5755-5761.

    Article  CAS  PubMed  Google Scholar 

  • Goodyear LJ, Giorgino F, et al. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest. 1995;95(5):2195-2204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goudriaan JR, Dahlmans VE, et al. CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice. J Lipid Res. 2003;44(12):2270-2277.

    Article  CAS  PubMed  Google Scholar 

  • Goudriaan JR, den Boer MA, et al. CD36 deficiency in mice impairs lipoprotein lipase-mediated triglyceride clearance. J Lipid Res. 2005;46(10):2175-2181.

    Article  CAS  PubMed  Google Scholar 

  • Greenhaff PL, Karagounis LG, et al. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab. 2008;295(3):E595-E604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guillet C, Delcourt I, et al. Changes in basal and insulin and amino acid response of whole body and skeletal muscle proteins in obese men. J Clin Endocrinol Metab. 2009;94(8):3044-3050.

    Article  CAS  PubMed  Google Scholar 

  • Guo ZK, Cella LK, et al. De novo lipogenesis in adipose tissue of lean and obese women: application of deuterated water and isotope ratio mass spectrometry. Int J Obes Relat Metab Disord. 2000;24(7):932-937.

    Article  CAS  PubMed  Google Scholar 

  • Hajri T, Abumrad NA. Fatty acid transport across membranes: relevance to nutrition and metabolic pathology. Annu Rev Nutr. 2002;22:383-415.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins M, Gabriely I, et al. Fructose improves the ability of hyperglycemia per se to regulate glucose production in type 2 diabetes. Diabetes. 2002;51(3):606-614.

    Article  CAS  PubMed  Google Scholar 

  • Hellerstein MK, Schwarz JM, et al. Regulation of hepatic de novo lipogenesis in humans. Annu Rev Nutr. 1996;16:523-557.

    Article  CAS  PubMed  Google Scholar 

  • Hill JO, Peters JC, et al. Nutrient balance in humans: effects of diet composition. Am J Clin Nutr. 1991;54(1):10-17.

    CAS  PubMed  Google Scholar 

  • Hoefler G, Noehammer C, et al. Muscle-specific overexpression of human lipoprotein lipase in mice causes increased intracellular free fatty acids and induction of peroxisomal enzymes. Biochimie. 1997;79(2–3):163-168.

    Article  CAS  PubMed  Google Scholar 

  • Hojlund K, Birk JB, et al. Dysregulation of glycogen synthase COOH- and NH2-terminal phosphorylation by insulin in obesity and type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009;94(11):4547-4556.

    Article  PubMed  CAS  Google Scholar 

  • Hoppeler H, Howald H, et al. Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol. 1985;59(2):320-327.

    CAS  PubMed  Google Scholar 

  • Ibrahimi A, Bonen A, et al. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem. 1999;274(38):26761-26766.

    Article  CAS  PubMed  Google Scholar 

  • Itani SI, Ruderman NB, et al. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002;51(7):2005-2011.

    Article  CAS  PubMed  Google Scholar 

  • Javed F, He Q, et al. Brain and high metabolic rate organ mass: contributions to resting energy expenditure beyond fat-free mass. Am J Clin Nutr. 2010;91(4):907-912.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen MD, Haymond MW. Protein metabolism in obesity: effects of body fat distribution and hyperinsulinemia on leucine turnover. Am J Clin Nutr. 1991;53(1):172-176.

    CAS  PubMed  Google Scholar 

  • Jensen DR, Schlaepfer IR, et al. Prevention of diet-induced obesity in transgenic mice overexpressing skeletal muscle lipoprotein lipase. Am J Physiol. 1997;273(2 Pt 2):R683-R689.

    CAS  PubMed  Google Scholar 

  • Jing E, O’Neill BT, et al. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes. 2013;62(10):3404-3417.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kahn R, Sievenpiper JL. Response to comment on Kahn and Sievenpiper. Dietary sugar and body weight: have we reached a crisis in the epidemic of obesity and diabetes? We have, but the pox on sugar is overwrought and overworked. Diabetes Care 2014;37:957-962. Diabetes Care 37(8):e189.

    Google Scholar 

  • Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes. 2000;49(5):677-683.

    Article  CAS  PubMed  Google Scholar 

  • Kelley DE, Goodpaster B, et al. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol. 1999a;277(6 Pt 1):E1130-E1141.

    CAS  PubMed  Google Scholar 

  • Kelley DE, Williams KV, et al. Insulin regulation of glucose transport and phosphorylation in skeletal muscle assessed by PET. Am J Physiol. 1999b;277(2 Pt 1):E361-E369.

    CAS  PubMed  Google Scholar 

  • Kim JY, Hickner RC, et al. Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab. 2000;279(5):E1039-E1044.

    CAS  PubMed  Google Scholar 

  • Kim JK, Fillmore JJ, et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci U S A. 2001;98(13):7522-7527.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krssak M, Falk Petersen K, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia. 1999;42(1):113-116.

    Article  CAS  PubMed  Google Scholar 

  • Laakso M, Edelman SV, et al. Kinetics of in vivo muscle insulin-mediated glucose uptake in human obesity. Diabetes. 1990;39(8):965-974.

    Article  CAS  PubMed  Google Scholar 

  • Lackey DE, Lynch CJ, et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am J Physiol Endocrinol Metab. 2013;304(11):E1175-E1187.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lefort N, Glancy B, et al. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Diabetes. 2010;59(10):2444-2452.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levak-Frank S, Radner H, et al. Muscle-specific overexpression of lipoprotein lipase causes a severe myopathy characterized by proliferation of mitochondria and peroxisomes in transgenic mice. J Clin Invest. 1995;96(2):976-986.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lima MM, Pareja JC, et al. Visceral fat resection in humans: effect on insulin sensitivity, beta-cell function, adipokines, and inflammatory markers. Obesity (Silver Spring). 2013;21(3):E182-E189.

    Article  CAS  Google Scholar 

  • Liu L, Zhang Y, et al. Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J Clin Invest. 2007;117(6):1679-1689.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lovejoy J, Mellen B, et al. Lactate generation following glucose ingestion: relation to obesity, carbohydrate tolerance and insulin sensitivity. Int J Obes. 1990;14(10):843-855.

    CAS  PubMed  Google Scholar 

  • Lovejoy J, Newby FD, et al. Insulin resistance in obesity is associated with elevated basal lactate levels and diminished lactate appearance following intravenous glucose and insulin. Metabolism. 1992;41(1):22-27.

    Article  CAS  PubMed  Google Scholar 

  • Luzi L, Castellino P, et al. Insulin and hyperaminoacidemia regulate by a different mechanism leucine turnover and oxidation in obesity. Am J Physiol. 1996;270(2 Pt 1):E273-E281.

    CAS  PubMed  Google Scholar 

  • Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014;10(12):723-736.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsusue K, Haluzik M, et al. Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest. 2003;111(5):737-747.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayerson AB, Hundal RS, et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes. 2002;51(3):797-802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCormack SE, Shaham O, et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes. 2013;8(1):52-61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McDevitt RM, Poppitt SD, et al. Macronutrient disposal during controlled overfeeding with glucose, fructose, sucrose, or fat in lean and obese women. Am J Clin Nutr. 2000;72(2):369-377.

    CAS  PubMed  Google Scholar 

  • McDevitt RM, Bott SJ, et al. De novo lipogenesis during controlled overfeeding with sucrose or glucose in lean and obese women. Am J Clin Nutr. 2001;74(6):737-746.

    CAS  PubMed  Google Scholar 

  • McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002;51(1):7-18.

    Article  CAS  PubMed  Google Scholar 

  • Meguid MM, Matthews DE, et al. Leucine kinetics at graded leucine intakes in young men. Am J Clin Nutr. 1986a;43(5):770-780.

    CAS  PubMed  Google Scholar 

  • Meguid MM, Matthews DE, et al. Valine kinetics at graded valine intakes in young men. Am J Clin Nutr. 1986b;43(5):781-786.

    CAS  PubMed  Google Scholar 

  • Minehira K, Vega N, et al. Effect of carbohydrate overfeeding on whole body macronutrient metabolism and expression of lipogenic enzymes in adipose tissue of lean and overweight humans. Int J Obes Relat Metab Disord. 2004;28(10):1291-1298.

    Article  CAS  PubMed  Google Scholar 

  • Mizgier ML, Casas M, et al. Potential role of skeletal muscle glucose metabolism on the regulation of insulin secretion. Obes Rev. 2014;15(7):587-597.

    Article  CAS  PubMed  Google Scholar 

  • Moro C, Galgani JE, et al. Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals. J Clin Endocrinol Metab. 2009;94(9):3440-3447.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muller MJ, Langemann D, et al. Effect of constitution on mass of individual organs and their association with metabolic rate in humans--a detailed view on allometric scaling. PLoS One. 2011;6(7):e22732.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Muller MJ, Wang Z, et al. Advances in the understanding of specific metabolic rates of major organs and tissues in humans. Curr Opin Clin Nutr Metab Care. 2013;16(5):501-508.

    PubMed  Google Scholar 

  • Muoio DM. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell. 2014;159(6):1253-1262.

    Article  CAS  PubMed  Google Scholar 

  • Nair KS, Garrow JS, et al. Effect of poor diabetic control and obesity on whole body protein metabolism in man. Diabetologia. 1983;25(5):400-403.

    Article  CAS  PubMed  Google Scholar 

  • Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15(5):606-614.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nielsen S, Guo Z, et al. Splanchnic lipolysis in human obesity. J Clin Invest. 2004;113(11):1582-1588.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nielsen J, Mogensen M, et al. Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. Am J Physiol Endocrinol Metab. 2010;298(3):E706-E713.

    Article  CAS  PubMed  Google Scholar 

  • Norgan NG. The beneficial effects of body fat and adipose tissue in humans. Int J Obes Relat Metab Disord. 1997;21(9):738-746.

    Article  CAS  PubMed  Google Scholar 

  • Oral EA, Simha V, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med. 2002;346(8):570-578.

    Article  CAS  PubMed  Google Scholar 

  • Owen OE, Mozzoli MA, et al. Oxidative and nonoxidative macronutrient disposal in lean and obese men after mixed meals. Am J Clin Nutr. 1992;55(3):630-636.

    CAS  PubMed  Google Scholar 

  • Parks EJ, Krauss RM, et al. Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. J Clin Invest. 1999;104(8):1087-1096.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pelsers MM, Tsintzas K, et al. Skeletal muscle fatty acid transporter protein expression in type 2 diabetes patients compared with overweight, sedentary men and age-matched, endurance-trained cyclists. Acta Physiol (Oxf). 2007;190(3):209-219.

    Article  CAS  Google Scholar 

  • Poehlman ET, Toth MJ. Mathematical ratios lead to spurious conclusions regarding age- and sex-related differences in resting metabolic rate. Am J Clin Nutr. 1995;61(3):482-485.

    CAS  PubMed  Google Scholar 

  • Prentice AM, Goldberg GR, et al. Physiological responses to slimming. Proc Nutr Soc. 1991;50(2):441-458.

    Article  CAS  PubMed  Google Scholar 

  • Promrat K, Lutchman G, et al. A pilot study of pioglitazone treatment for nonalcoholic steatohepatitis. Hepatology. 2004;39(1):188-196.

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar B, Carey PE, et al. Real-time assessment of postprandial fat storage in liver and skeletal muscle in health and type 2 diabetes. Am J Physiol Endocrinol Metab. 2005;288(4):E789-E797.

    Article  CAS  PubMed  Google Scholar 

  • Ravussin E, Galgani JE. The implication of brown adipose tissue for humans. Annu Rev Nutr. 2011;31:33-47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Redman LM, Heilbronn LK, et al. Metabolic and behavioral compensations in response to caloric restriction: implications for the maintenance of weight loss. PLoS One. 2009;4(2):e4377.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77(3):731-758.

    CAS  PubMed  Google Scholar 

  • Rosenbaum M, Goldsmith R, et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest. 2005;115(12):3579-3586.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rutkowski JM, Stern JH, et al. The cell biology of fat expansion. J Cell Biol. 2015;208(5):501-512.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Samocha-Bonet D, Dixit VD, et al. Metabolically healthy and unhealthy obese – the 2013 Stock Conference report. Obes Rev. 2014;15(9):697-708.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • She P, Van Horn C, et al. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007;293(6):E1552-E1563.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med. 2014;371(23):2237-2238.

    PubMed  Google Scholar 

  • Sievenpiper JL, Chiavaroli L, et al. ‘Catalytic’ doses of fructose may benefit glycaemic control without harming cardiometabolic risk factors: a small meta-analysis of randomised controlled feeding trials. Br J Nutr. 2012;108(3):418-423.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simha V, Szczepaniak LS, et al. Effect of leptin replacement on intrahepatic and intramyocellular lipid content in patients with generalized lipodystrophy. Diabetes Care. 2003;26(1):30-35.

    Article  CAS  PubMed  Google Scholar 

  • Simoneau JA, Veerkamp JH, et al. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J. 1999;13(14):2051-2060.

    CAS  PubMed  Google Scholar 

  • Solini A, Bonora E, et al. Protein metabolism in human obesity: relationship with glucose and lipid metabolism and with visceral adipose tissue. J Clin Endocrinol Metab. 1997;82(8):2552-2558.

    CAS  PubMed  Google Scholar 

  • Speakman JR. Evolutionary perspectives on the obesity epidemic: adaptive, maladaptive, and neutral viewpoints. Annu Rev Nutr. 2013;33:289-317.

    Article  CAS  PubMed  Google Scholar 

  • Speakman JR, Fletcher Q, et al. The ‘39 steps’: an algorithm for performing statistical analysis of data on energy intake and expenditure. Dis Model Mech. 2013;6(2):293-301.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stanhope KL, Havel PJ. Fructose consumption: considerations for future research on its effects on adipose distribution, lipid metabolism, and insulin sensitivity in humans. J Nutr. 2009;139(6):1236S-1241S.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stanhope KL, Schwarz JM, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322-1334.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stock MJ. Gluttony and thermogenesis revisited. Int J Obes Relat Metab Disord. 1999;23(11):1105-1117.

    Article  CAS  PubMed  Google Scholar 

  • Stunff CL, Bougneres PF. Alterations of plasma lactate and glucose metabolism in obese children. Am J Physiol. 1996;271(5 Pt 1):E814-E820.

    CAS  PubMed  Google Scholar 

  • Swinburn B, Sacks G, et al. Increased food energy supply is more than sufficient to explain the US epidemic of obesity. Am J Clin Nutr. 2009;90(6):1453-1456.

    Article  CAS  PubMed  Google Scholar 

  • Thorens B, Mueckler M. Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab. 2010;298(2):E141-E145.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Timmers S, Nabben M, et al. Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity. Proc Natl Acad Sci U S A. 2012;109(29):11711-11716.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trujillo ME, Scherer PE. Adipose tissue-derived factors: impact on health and disease. Endocr Rev. 2006;27(7):762-778.

    Article  CAS  PubMed  Google Scholar 

  • Tschop MH, Speakman JR, et al. A guide to analysis of mouse energy metabolism. Nat Methods. 2012;9(1):57-63.

    Article  CAS  Google Scholar 

  • Virtue S, Vidal-Puig A. It’s not how fat you are, it’s what you do with it that counts. PLoS Biol. 2008;6(9):e237.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Voshol PJ, Jong MC, et al. In muscle-specific lipoprotein lipase-overexpressing mice, muscle triglyceride content is increased without inhibition of insulin-stimulated whole-body and muscle-specific glucose uptake. Diabetes. 2001;50(11):2585-2590.

    Article  CAS  PubMed  Google Scholar 

  • Walther TC, Farese RV Jr. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem. 2012;81:687-714.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Z, O’Connor TP, et al. The reconstruction of Kleiber’s law at the organ-tissue level. J Nutr. 2001;131(11):2967-2970.

    CAS  PubMed  Google Scholar 

  • Wang TJ, Larson MG, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448-453.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Welle S, Barnard RR, et al. Increased protein turnover in obese women. Metabolism. 1992;41(9):1028-1034.

    Article  CAS  PubMed  Google Scholar 

  • Welle S, Statt M, et al. Differential effect of insulin on whole-body proteolysis and glucose metabolism in normal-weight, obese, and reduced-obese women. Metabolism. 1994;43(4):441-445.

    Article  CAS  PubMed  Google Scholar 

  • Westerterp KR. Food quotient, respiratory quotient, and energy balance. Am J Clin Nutr. 1993;57(5 Suppl):59S-764S; discussion 764S-765S.

    Google Scholar 

  • Weyer C, Vozarova B, et al. Changes in energy metabolism in response to 48 h of overfeeding and fasting in Caucasians and Pima Indians. Int J Obes Relat Metab Disord. 2001;25(5):593-600.

    Article  CAS  PubMed  Google Scholar 

  • Yki-Jarvinen H, Mott D, et al. Regulation of glycogen synthase and phosphorylase activities by glucose and insulin in human skeletal muscle. J Clin Invest. 1987;80(1):95-100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young AA, Bogardus C, et al. Muscle glycogen synthesis and disposition of infused glucose in humans with reduced rates of insulin-mediated carbohydrate storage. Diabetes. 1988;37(3):303-308.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann R, Strauss JG, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306(5700):1383-1386.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose E. Galgani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Galgani, J.E., Cortés, V., Carrasco, F. (2016). Carbohydrate, Fat, and Protein Metabolism in Obesity. In: Ahima, R.S. (eds) Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-11251-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11251-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11250-3

  • Online ISBN: 978-3-319-11251-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics