Advertisement

Astrobiology: An Overview

Living reference work entry

Latest version View entry history

  • 26 Downloads

Abstract

Astrobiology is the study of the origin, evolution, distribution, and future of life in the universe, and so has life at its core. It asks some of humanities most profound questions: Where does life come from? Where is it going? Are we alone?

Notes

Acknowledgments

Louisa Preston acknowledges the support of the UK Space Agency Aurora grant ST/P001254/1.

References

  1. Abramov O, Mojzsis SJ (2009) Microbial habitability of the hadean earth during the late heavy bombardment. Nature 459(7245):419–422.  https://doi.org/10.1038/nature08015CrossRefGoogle Scholar
  2. Allwood AC, Grotzinger JP, Knoll AH, Burch IW, Anderson MS, Coleman ML, Kanik I (2009) Controls on development and diversity of early Archean stromatolites. Proc Natl Acad Sci 106(24):9548–9555.  https://doi.org/10.1073/pnas.0903323106CrossRefGoogle Scholar
  3. Amils R, Ellis-Evans C, Hinghofer-Szalkay HG (2007a) Life in extreme environments, 1st edn. Springer, Netherlands.  https://doi.org/10.1007/978-1-4020-6285-8CrossRefGoogle Scholar
  4. Amils R, González-Toril E, Fernández-Remolar D, Gómez F, Aguilera Á, Rodríguez N, Malki M et al (2007b) Extreme environments as Mars terrestrial analogs: the Rio Tinto case. Planet Space Sci 55(3):370–381.  https://doi.org/10.1016/J.PSS.2006.02.006CrossRefGoogle Scholar
  5. Ashcroft F, Hutchison G (2001) Life at the extremes: the science of survival. BMJ 322(7283):437.  https://doi.org/10.1136/bmj.322.7283.437CrossRefGoogle Scholar
  6. Awramik SM, Schopf JW, Walter MR (1983) Filamentous fossil bacteria from the Archean of Western Australia. Precambrian Res 20(2–4):357–374.  https://doi.org/10.1016/0301-9268(83)90081-5CrossRefGoogle Scholar
  7. Battista JR (1997) Against all odds: the survival strategies of Deinococcus Radiodurans. Annu Rev Microbiol 51:203–224.  https://doi.org/10.1146/annurev.micro.51.1.203CrossRefGoogle Scholar
  8. Becerra A, Delaye L, Islas S, Lazcano A (2007) The very early stages of biological evolution and the nature of the last common ancestor of the three major cell domains. Annu Rev Ecol Evol Syst 38.  https://doi.org/10.1146/annurev.ecolsys.38.091206.095825
  9. Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe? Curr Opin Chem Biol 8(6):672–689.  https://doi.org/10.1016/J.​CBPA.​2004.10.003CrossRefGoogle Scholar
  10. Bieler A, Tzou C-Y, Balsiger H, Le Roy L, Rubin M, Schuhmann M, Gasc S et al (2017) Organics in comet 67P – a first comparative analysis of mass spectra from ROSINA–DFMS, COSAC and Ptolemy. Mon Not R Astron Soc 469(Suppl_2):S130–S141.  https://doi.org/10.1093/mnras/stx1415CrossRefGoogle Scholar
  11. Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel Group of Archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1(1):14–21CrossRefGoogle Scholar
  12. Brown RH, Soderblom LA, Soderblom JM, Clark RN, Jaumann R, Barnes JW, Sotin C, Buratti B, Baines KH, Nicholson PD (2008) The identification of liquid ethane in Titan’s Ontario lacus. Nature 454(July):607CrossRefGoogle Scholar
  13. Campbell NA, Reece JB (2002) Biology (ed: Benjamin Cummings), 6th edn. New YorkGoogle Scholar
  14. Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in south pole snow. Appl Environ Microbiol 66(10):4514–4517CrossRefGoogle Scholar
  15. Carter J, Poulet F, Bibring J-P, Murchie S (2010) Detection of hydrated silicates in crustal outcrops in the Northern Plains of Mars. Science (New York) 328(5986):1682–1686.  https://doi.org/10.1126/science.​1189013CrossRefGoogle Scholar
  16. Cockell CS (1999) Life on Venus. Planet Space Sci 47(12):1487–1501.  https://doi.org/10.1016/S0032-0633(99)00036-7CrossRefGoogle Scholar
  17. Cockell C (2015) Astrobiology: understanding life in the universe. Wiley Blackwell, 472 pp. ISBN: 978-1-118-91333-8Google Scholar
  18. Cousins CR, Crawford IA (2011) Volcano-ice interaction as a microbial habitat on earth and Mars. Astrobiology 11(7):695–710.  https://doi.org/10.1089/ast.​2010.0550CrossRefGoogle Scholar
  19. Dalton JB, Mogul R, Kagawa HK, Chan SL, Jamieson CS (2003) Near-infrared detection of potential evidence for microscopic organisms on Europa. Astrobiology 3(3):505–529.  https://doi.org/10.1089/153110703322610618CrossRefGoogle Scholar
  20. Dartnell LR, Desorgher L, Ward JM, Coates AJ (2007) Modelling the surface and subsurface Martian radiation environment: implications for astrobiology. Geophys Res Lett 34(2).  https://doi.org/10.1029/2006GL027494
  21. Domagal-Goldman SD, Wright KE, Adamala K, de la Rubia LA, Bond J, Dartnell LR, Goldman AD et al (2016) The astrobiology primer v2.0. Astrobiology 16(8):561–653.  https://doi.org/10.1089/ast.2015.1460CrossRefGoogle Scholar
  22. Eigenbrode JL, Summons RE, Steele A, Freissinet C, Millan M, Navarro-González R, Sutter B et al (2018) Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science 360(6393):1096–1101.  https://doi.org/10.1126/science.aas9185CrossRefGoogle Scholar
  23. Ellis-Evans JC, Wynn-Williams D (1996) A great Lake under the ice. Nature 381(6584):644–645.  https://doi.org/10.1038/381644a0CrossRefGoogle Scholar
  24. Fastook JL, Head JW (2015) Glaciation in the late Noachian icy highlands: ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planet Space Sci 106(February):82–98.  https://doi.org/10.1016/J.PSS.2014.11.028CrossRefGoogle Scholar
  25. Fernández-Remolar DC, Morris RV, Gruener JE, Amils R, Knoll AH (2005) The Río Tinto Basin, Spain: mineralogy, sedimentary Geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet Sci Lett 240(1):149–167.  https://doi.org/10.1016/j.epsl.2005.09.043CrossRefGoogle Scholar
  26. Fortes AD (2000) Exobiological implications of a possible Ammonia–Water Ocean inside titan. Icarus 146(2):444–452.  https://doi.org/10.1006/ICAR.2000.6400CrossRefGoogle Scholar
  27. Gaucher EA, Kratzer JT, Randall RN (2010) Deep phylogeny – how a tree can help characterize early life on earth. Cold Spring Harb Perspect Biol 2(1):a002238.  https://doi.org/10.1101/cshperspect.a002238CrossRefGoogle Scholar
  28. Gendrin A (2005) Sulfates in Martian layered terrains: the OMEGA/Mars express view. Science 307(5715):1587–1591.  https://doi.org/10.1126/science.1109087CrossRefGoogle Scholar
  29. Gladman B, Dones L, Levison HF, Burns JA (2005) Impact seeding and reseeding in the inner solar system. Astrobiology 5(4):483–496.  https://doi.org/10.1089/ast.2005.5.483CrossRefGoogle Scholar
  30. Grimm SL, Demory B-O, Gillon M, Dorn C, Agol E, Burdanov A, Delrez L et al (2018) The nature of the TRAPPIST-1 exoplanets. A&A 613:A68CrossRefGoogle Scholar
  31. Grotzinger JP, Arvidson RE, Bell JF, Calvin W, Clark BC, Fike DA, Golombek M et al (2005) Stratigraphy and sedimentology of a dry to wet Eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth Planet Sci Lett 240(1):11–72.  https://doi.org/10.1016/j.epsl.2005.09.039CrossRefGoogle Scholar
  32. Hashimoto T, Kunieda T (2017) DNA protection protein, a novel mechanism of radiation tolerance: lessons from tardigrades. Life (Basel, Switzerland) 7(2):26.  https://doi.org/10.3390/life7020026CrossRefGoogle Scholar
  33. Joyce GF (1994) Foreward. In: Deamer DW, Fleischaker GR (eds) Origins of life: the central concepts. Jones & Bartlett, Boston, pp xi–xiiGoogle Scholar
  34. Kargel JS, Kaye JZ, Head JW, Marion GM, Sassen R, Crowley JK, Ballesteros OP, Grant SA, Hogenboom DL (2000) Europa’s crust and ocean: origin, composition, and the prospects for life. Icarus 148(1):226–265.  https://doi.org/10.1006/ICAR.2000.6471CrossRefGoogle Scholar
  35. Kelley DS, Karson JA, Blackman DK, Fruh-Green GL, Butterfield DA, Lilley MD, Olson EJ et al (2001) An off-Axis hydrothermal vent field near the mid-Atlantic ridge at 30 degrees N. Nature 412(6843):145–149.  https://doi.org/10.1038/35084000CrossRefGoogle Scholar
  36. Kivelson MG, Khurana KK, Russell CT, Volwerk M, Walker RJ, Zimmer C (2000) Galileo magnetometer measurements: a stronger case for a Subsurface Ocean at Europa. Science 289(5483):1340–1343.  https://doi.org/10.1126/science.289.5483.1340CrossRefGoogle Scholar
  37. Klein HP, Lederberg J, Rich A (1972) Biological experiments: the Viking Mars Lander. Icarus 16(1):139–146.  https://doi.org/10.1016/0019-1035(72)90141-8CrossRefGoogle Scholar
  38. Léveillé R (2010) A half-century of terrestrial analog studies: from craters on the moon to searching for life on Mars. Planet Space Sci 58(4):631–638.  https://doi.org/10.1016/J.PSS.2009.04.001CrossRefGoogle Scholar
  39. Maher KA, Stevenson DJ (1988) Impact frustration of the origin of life. Nature 331(6157):612–614.  https://doi.org/10.1038/331612a0CrossRefGoogle Scholar
  40. McCord TB, Hansen GB, Fanale FP, Carlson RW, Matson DL, Johnson TV, Smythe WD et al (1998) Salts on Europa’s surface detected by Galileo’s near infrared mapping spectrometer. Science 280(5367):1242–1245.  https://doi.org/10.1126/science.280.5367.1242CrossRefGoogle Scholar
  41. Navarro-González R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM et al (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302(5647):1018–1021.  https://doi.org/10.1126/science.1089143CrossRefGoogle Scholar
  42. Ojha L, Wilhelm MB, Murchie SL, McEwen AS, Wray JJ, Hanley J, Massé M, Chojnacki M (2015) Spectral evidence for hydrated salts in recurring slope Lineae on Mars. Nat Geosci 8(September):829CrossRefGoogle Scholar
  43. Oliver JD, Perry RS (2006) Definitely life but not definitively. Origins Life Evol Biosph 36:515–521.  https://doi.org/10.1007/s11084-006-9035-4CrossRefGoogle Scholar
  44. Pollard W, Omelon C, Andersen D, McKay C (1999) Perennial spring occurrence in the expedition fiord area of Western Axel Heiberg Island, Canadian high Arctic. Can J Earth Sci 36(1):105–120.  https://doi.org/10.1139/e98-097CrossRefGoogle Scholar
  45. Porco CC, Helfenstein P, Thomas PC, Ingersoll AP, Wisdom J, West R, Neukum G et al (2006) Cassini observes the active south pole of Enceladus. Science 311(5766):1393–1401.  https://doi.org/10.1126/science.1123013CrossRefGoogle Scholar
  46. Postberg F, Schmidt J, Hillier J, Kempf S, Srama R (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474(June):620CrossRefGoogle Scholar
  47. Postberg F, Khawaja N, Abel B, Choblet G, Glein CR, Gudipati MS, Henderson BL et al (2018) Macromolecular organic compounds from the depths of Enceladus. Nature 558(7711):564–568.  https://doi.org/10.1038/s41586-018-0246-4CrossRefGoogle Scholar
  48. Preston LJ, Dartnell LR (2014) Planetary habitability: lessons learned from terrestrial analogues. Int J Astrobiol 13(1):81–98.  https://doi.org/10.1017/S1473550413000396CrossRefGoogle Scholar
  49. Preston LJ, Genge MJ (2010) The Rhynie Chert, Scotland, and the search for life on Mars. Astrobiology 10(5):549–560.  https://doi.org/10.1089/ast.2008.0321CrossRefGoogle Scholar
  50. Preston LJ, Benedix GK, Genge MJ, Sephton MA (2008) A multidisciplinary study of silica sinter deposits with applications to silica identification and detection of fossil life on Mars. Icarus 198(2):331–350. ​ https://doi.org/10.1016/j.icarus.2008.08.006
  51. Preston LJ, Izawa MRM, Banerjee NR (2011a) Infrared spectroscopic characterization of organic matter associated with microbial bioalteration textures in basaltic glass. Astrobiology 11(7):585–599. ​ https://doi.org/10.1089/ast.2010.0604
  52. Preston LJ, Shuster J, Fernández-Remolar D, Banerjee NR, Osinski GR, Southam G (2011b) The preservation and degradation of filamentous Bacteria and biomolecules within Iron oxide deposits at Rio Tinto, Spain. Geobiology 9(3):233–249. ​ https://doi.org/10.1111/j.1472-4669.2011.00275.x
  53. Preston LJ, Barber, SJ, Grady MM and the CAFE Team (2013) CAFE: the catalogue of planetary analogues. https://esamultimedia.esa.int/docs/gsp/The_Catalogue_of_Planetary_Analogues.pdf
  54. Preston LJ, Melim LA, Polyak VJ, Asmerom Y, Southam G (2014) Infrared spectroscopic biosignatures from hidden cave, New Mexico: possible applications for remote life detection. Geomicrobiol J 31(10):929–941. ​ https://doi.org/10.1080/01490451.2014.913096
  55. Preston LJ, Johnson D, Cockell CS, Grady MM (2015) Fourier transform infrared spectral detection of life in polar subsurface environments and its application to Mars exploration. Appl Spectrosc 69(9):1059–1065. ​ https://doi.org/10.1366/14-07843
  56. Rennó NO, Bos BJ, Catling D, Clark BC, Drube L, Fisher D, Goetz W, Hviid SF, Keller HU, Kok JF, Kounaves SP, Leer K, Lemmon M, Madsen MB, Markiewicz WJ, Marshall J, McKay C, Mehta M, Smith M, Zorzano MP, Smith PH, Stoker C, Young SMM (2009) Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J Geophys Res Planets 114. ​ https://doi.org/10.1029/2009JE003362
  57. Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost Bacteria below the freezing point. Appl Environ Microbiol 66(8):3230–3233. ​ https://doi.org/10.1128/AEM.66.8.3230-3233.2000
  58. Rothschild LJ (2007) Extremophiles: defining the envelope for the search for life in the universe. In: Planetary systems and the origins of life, Pudritz R.E., Higgs, P., Stone J. Cambridge University Press, Cambridge, pp 123–146Google Scholar
  59. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409(SRC):1092–1101Google Scholar
  60. Russell MJ, Nitschke W, Branscomb E (2013) The inevitable journey to being. Philos Trans R Soc Lond Ser B Biol Sci 368(1622):20120254. ​ https://doi.org/10.1098/rstb.2012.0254
  61. Sagan C (1961) The planet Venus. Science 133(3456):849–858. ​ https://doi.org/10.1126/science.133.3456.849
  62. Schulze-Makuch D, Grinspoon DH (2005) Biologically enhanced energy and carbon cycling on titan? Astrobiol SRC-B 5:560–567CrossRefGoogle Scholar
  63. Schulze-Makuch D, Grinspoon D, Abbas O, Irwin L, Bullock M (2004) Survival strategy for putative phototrophic life in the Venusian atmosphere. Astrobiol SRC-B 4:11–18CrossRefGoogle Scholar
  64. Schulze-Makuch D, Haque S, de Sousa Antonio MR, Ali D, Hosein R, Song YC, Yang J et al (2011) Microbial life in a liquid Asphalt Desert. Astrobiology 11(3):241–258. ​ https://doi.org/10.1089/ast.2010.0488
  65. Seckbach J (1999) The Cyanidiophyceae: hot spring acidophilic algae BT-enigmatic microorganisms and life in extreme environments. In: Seckbach J (ed), Enigmatic microorganisms and life in extreme environments. Springer Netherlands, Dordrecht, pp 425–435. ​ https://doi.org/10.1007/978-94-011-4838-2_33
  66. Sharma A, Scott JH, Cody GD, Fogel ML, Hazen RM, Hemley RJ, Huntress WT (2002) Microbial activity at Gigapascal pressures. Science (New York, NY) 295(5559):1514–1516.  https://doi.org/10.1126/science.​1068018
  67. Simoncini E, Russell MJ, Kleidon A (2011) Modeling free energy availability from hadean hydrothermal systems to the first metabolism. Orig Life Evol Biosph 41:529–532. ​ https://doi.org/10.1007/s11084-011-9251-4
  68. Singleton R Jr, Amelunxen RE (1973) Proteins from thermophilic microorganisms. Bacteriol Rev 37(3):320–342CrossRefGoogle Scholar
  69. Squyres SW, Knoll AH (2005) Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars. Earth Planet Sci Lett 240(1):1–10. ​ https://doi.org/10.1016/j.epsl.2005.09.038
  70. Strom RG, Schaber GG, Dawson DD (1994) The global resurfacing of Venus. J Geophys Res Planets 99(E5):10899–10926. ​ https://doi.org/10.1029/94JE00388
  71. Taylor FW, Hunten DM (2014) Venus: atmosphere. Enc Solar Syst 305–322. ​ https://doi.org/10.1016/B978-0-12-415845-0.00014-1
  72. Theobald DL (2010) A formal test of the theory of universal common ancestry. Nature 465(May):219CrossRefGoogle Scholar
  73. Ventosa A, de la Haba RR (2014) Alkaliphile. In: Amils R, Gargaud M, Quintanilla JC, Cleaves HJ, Irvine WM, Pinti D, Viso M (eds), Encyclopedia of astrobiology. Springer, Berlin/Heidelberg, pp 1–3. ​ https://doi.org/10.1007/978-3-642-27833-4_52-3
  74. Waite JH Jr, Lewis WS, Magee BA, Lunine JI, McKinnon WB, Glein CR, Mousis O et al (2009) Liquid water on Enceladus from observations of Ammonia and 40Ar in the plume. Nature 460(July):487CrossRefGoogle Scholar
  75. Westall F (2008) Morphological biosignatures in early terrestrial and extraterrestrial materials. In: Botta O, Bada JL, Gomez-Elvira J, Javaux E, Selsis F, Summons R (eds) Strategies of life detection. Springer US, Boston, pp 95–114. ​ https://doi.org/10.1007/978-0-387-77516-6_9
  76. Woese C (1998) The universal ancestor. Proc Natl Acad Sci 95(12):6854–6859. ​ https://doi.org/10.1073/pnas.95.12.6854
  77. Womack AM, BJM B, Green JL (2010) Biodiversity and biogeography of the atmosphere. Philos Trans R Soc B: Biol Sci 365(1558):3645–3653. ​ https://doi.org/10.1098/rstb.2010.0283

Authors and Affiliations

  1. 1.Department of Earth SciencesThe Natural History MuseumLondonUK
  2. 2.NASA Ames Research CenterMoffett FieldUSA

Section editors and affiliations

  • Lynn J. Rothschild
    • 1
  • Louisa J. Preston
    • 2
  1. 1.NASA Ames Research CenterMoffett FieldUSA
  2. 2.Department of Earth SciencesThe Natural History MuseumLondonUK

Personalised recommendations