Advertisement

Concepts of Solutions in the Thermodynamics of Compressible Fluids

  • Eduard Feireisl
Living reference work entry

Abstract

The objective of this chapter is to highlight the recent development of the mathematical theory of complete fluids. The word complete means the governing system of equations is rich enough to incorporate the basic physical principles, in particular the first, second, and third laws of thermodynamics, in a correct and integral way into the mathematical model. In the whole text, the platform of classical continuum mechanics is adopted, where the fluid motion is described in terms of observable macroscopic quantities: the mass density, the (absolute) temperature, and the (bulk) velocity.

Keywords

Weak Solution Euler System Total Energy Balance Dissipative Solution Internal Energy Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The research of E.F. leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ ERC Grant Agreement 320078. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by RVO:67985840.

References

  1. 1.
    J.T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94(1), 61–66 (1984)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    S.E. Bechtel, F.J. Rooney, M.G. Forest, Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids. J. Appl. Mech. 72, 299–300 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    F. Belgiorno, Notes on the third law of thermodynamics, i. J. Phys. A 36, 8165–8193 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    F. Belgiorno, Notes on the third law of thermodynamics, ii. J. Phys. A 36, 8195–8221 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    S. Benzoni-Gavage, D. Serre, Multidimensional Hyperbolic Partial Differential Equations, First Order Systems and Applications. Oxford Mathematical Monographs (The Clarendon Press Oxford University Press, Oxford, 2007)MATHGoogle Scholar
  6. 6.
    D. Bresch, B. Desjardins, Stabilité de solutions faibles globales pour les équations de Navier-Stokes compressibles avec température. C.R. Acad. Sci. Paris 343, 219–224 (2006)Google Scholar
  7. 7.
    D. Bresch, B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. 87, 57–90 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    T. Buckmaster, Onsager’s conjecture almost everywhere in time. Commun. Math. Phys. 333(3), 1175–1198 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    M. Bulíček, J. Málek, K.R. Rajagopal, Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear- rate dependent viscosity. Indiana Univ. Math. J. 56, 51–86 (2007)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    E. Chiodaroli, E. Feireisl, O. Kreml, On the weak solutions to the equations of a compressible heat conducting gas. Anna. Inst. Poincaré, Anal. Nonlinear 32, 225–243 (2015)Google Scholar
  11. 11.
    A.J. Chorin, J.E. Marsden, A Mathematical Introduction to Fluid Mechanics (Springer, New York, 1979)CrossRefMATHGoogle Scholar
  12. 12.
    P. Constantin, C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations. Indiana Univ. Math. J. 42(3), 775–789 (1993)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    C.M. Dafermos, The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    S.R. de Groot, P. Mazur, Nonequilibrium Thermodynamics (Dover Publications, Inc., New York, 1984) Reprint of the 1962 original.Google Scholar
  15. 15.
    C. De Lellis, L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    C. De Lellis, L. Székelyhidi, Jr., Dissipative continuous Euler flows. Invent. Math. 193(2), 377–407 (2013)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    C. De Lellis, L. Székelyhidi, Jr., Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc. (JEMS) 16(7), 1467–1505 (2014)Google Scholar
  18. 18.
    J.L. Ericksen, Introduction to the Thermodynamics of Solids, revised ed. Applied Mathematical Sciences, vol. 131 (Springer, New York, 1998)Google Scholar
  19. 19.
    J. Fan, S. Jiang, Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(1), 337–350 (2010)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    C.L. Fefferman, Existence and smoothness of the Navier-Stokes equation, in The Millennium Prize Problems (Clay Mathematical Inst., Cambridge, 2006), pp. 57–67MATHGoogle Scholar
  21. 21.
    E. Feireisl, Dynamics of Viscous Compressible Fluids (Oxford University Press, Oxford, 2004)MATHGoogle Scholar
  22. 22.
    E. Feireisl, Relative entropies in thermodynamics of complete fluid systems. Discret. Cont. Dyn. Syst. Ser. A 32, 3059–3080 (2012)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    E. Feireisl, T. Karper, A. Novotný, On a convergent numerical scheme for the full Navier-Stokes-Fourier system. IMA J. Numer. Math. 36(4), 2016, 1477–1535CrossRefGoogle Scholar
  24. 24.
    E. Feireisl, O. Kreml, A. Vasseur, Stability of the isentropic Riemann solutions of the full multidimensional Euler system. SIAM J. Math. Anal. 47, 2416–2425 (2015)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids (Birkhäuser-Verlag, Basel, 2009)CrossRefMATHGoogle Scholar
  26. 26.
    E. Feireisl, A. Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204, 683–706 (2012)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    E. Feireisl, A. Novotný, Y. Sun, A regularity criterion for the weak solutions to the Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 212(1), 219–239 (2014)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    G. Gallavotti, Statistical Mechanics: A Short Treatise (Springer, Heidelberg, 1999)CrossRefMATHGoogle Scholar
  29. 29.
    G. Gallavotti, Foundations of Fluid Dynamics (Springer, New York, 2002)CrossRefMATHGoogle Scholar
  30. 30.
    D. Hoff, Dynamics of singularity surfaces for compressible viscous flows in two space dimensions. Commun. Pure Appl. Math. 55, 1365–1407 (2002)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    D. Hoff, H.K. Jenssen, Symmetric nonbarotropic flows with large data and forces. Arch. Ration. Mech. Anal. 173, 297–343 (2004)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    D. Hoff, M.M. Santos, Lagrangean structure and propagation of singularities in multidimensional compressible flow. Arch. Ration. Mech. Anal. 188(3), 509–543 (2008)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    X. Huang, J. Li, Y. Wang, Serrin-type blowup criterion for full compressible Navier-Stokes system. Arch. Ration. Mech. Anal. 207(1), 303–316 (2013)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    D. Jesslé, B.J. Jin, A. Novotný, Navier-Stokes-Fourier system on unbounded domains: weak solutions, relative entropies, weak-strong uniqueness. SIAM J. Math. Anal. 45(3), 1907–1951 (2013)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    P.-L. Lions, Mathematical Topics in Fluid Dynamics, Vol.1, Incompressible Models (Oxford Science Publication, Oxford, 1996)Google Scholar
  36. 36.
    A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)MathSciNetMATHGoogle Scholar
  37. 37.
    A. Matsumura, T. Nishida, The initial value problem for the equations of motion of compressible and heat conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    N.V. Priezjev, S.M. Troian, Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006)CrossRefMATHGoogle Scholar
  39. 39.
    G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    J. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer, New York, 1967)MATHGoogle Scholar
  42. 42.
    Y. Sun, C. Wang, Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows. Arch. Ration. Mech. Anal. 201(2), 727–742 (2011)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    T. Tao, Localisation and compactness properties of the Navier-Stokes global regularity problem. Anal. PDE 6(1), 25–107 (2013)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    A. Valli, An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. (4) 130, 197–213 (1982)Google Scholar
  45. 45.
    H. Wen, C. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum. Adv. Math. 248, 534–572 (2013)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    C.H. Wilcox, Sound Propagation in Stratified Fluids. Applied Mathematics Series, vol. 50 (Springer, Berlin, 1984)Google Scholar
  47. 47.
    R.Kh. Zeytounian, Asymptotic Modelling of Fluid Flow Phenomena. Fluid Mechanics and Its Applications, vol. 64 (Kluwer Academic Publishers, Dordrecht, 2002)Google Scholar
  48. 48.
    W.P. Ziemer, Weakly Differentiable Functions (Springer, New York, 1989)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Evolution Differential Equations (EDE), Academy of Sciences of the Czech Republic, Institute of MathematicsPraha 1Czech Republic

Personalised recommendations