H. Abels, The initial-value problem for the Navier-Stokes equations with a free surface in L
q-Sobolev spaces. Adv. Differ. Equ. 10(1), 45–64 (2005)
MathSciNet
MATH
Google Scholar
G. Allain, Small-time existence for the Navier-Stokes equations with a free surface. Appl. Math. Optim. 16(1), 37–50 (1987)
MathSciNet
CrossRef
MATH
Google Scholar
J.T. Beale, Large-time regularity of viscous surface waves. Arch. Ration. Mech. Anal. 84(4), 307–352 (1983/1984)
Google Scholar
J.T. Beale, T. Nishida, Large-time behavior of viscous surface waves, in Recent Topics in Nonlinear PDE, II, Sendai, 1984. North-Holland Mathematics Studies, vol. 128 (North-Holland, Amsterdam, 1985), pp. 1–14
Google Scholar
D. Bothe, J. Prüss, On the two-phase Navier-Stokes equations with Boussinesq-Scriven surface fluid. J. Math. Fluid Mech. 12(1), 133–150 (2010)
MathSciNet
CrossRef
MATH
Google Scholar
K. Deimling, in Nonlinear Functional Analysis (Springer, Berlin, 1985)
CrossRef
MATH
Google Scholar
I.V. Denisova, A priori estimates for the solution of the linear nonstationary problem connected with the motion of a drop in a liquid medium. Trudy Mat. Inst. Steklov. 188, 3–21, 191 (1990). Translation in Proc. Steklov Inst. Math. 1991(3), 1–24, Boundary value problems of mathematical physics, 14 (Russian)
Google Scholar
I.V. Denisova, Problem of the motion of two viscous incompressible fluids separated by a closed free interface. Acta Appl. Math. 37(1–2), 31–40 (1994). Mathematical problems for Navier-Stokes equations (Centro, 1993)
Google Scholar
I.V. Denisova, On the problem of thermocapillary convection for two incompressible fluids separated by a closed interface, in Trends in Partial Differential Equations of Mathematical Physics. Progress in Nonlinear Differential Equations and Their Applications, vol. 61 (Birkhäuser, Basel, 2005), pp. 45–64
Google Scholar
I.V. Denisova, Global solvability of a problem on two fluid motion without surface tension. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 348(Kraevye Zadachi Matematicheskoi Fiziki i Smezhnye Voprosy Teorii Funktsii. 38), 19–39, 303 (2007). Translation in J. Math. Sci. (N.Y.) 152(5), 625–637 (2008)
Google Scholar
I.V. Denisova, Global L
2-solvability of a problem governing two-phase fluid motion without surface tension. Port. Math. 71(1), 1–24 (2014)
MathSciNet
CrossRef
MATH
Google Scholar
I.V. Denisova, V.A. Solonnikov, Solvability in Hölder spaces of a model initial-boundary value problem generated by a problem on the motion of two fluids. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 188(Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor. Funktsii. 22), 5–44, 186 (1991). Translation in J. Math. Sci. 70(3), 1717–1746 (1994)
Google Scholar
I.V. Denisova, V.A. Solonnikov, Classical solvability of the problem of the motion of two viscous incompressible fluids. Algebra i Analiz 7(5), 101–142 (1995) Translation in St. Petersburg Math. J. 7(5), 755–786 (1996)
Google Scholar
I.V. Denisova, V.A. Solonnikov, Global solvability of the problem of the motion of two incompressible capillary fluids in a container. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 397(Kraevye Zadachi Matematicheskoi Fiziki i Smezhnye Voprosy Teorii Funktsii. 42), 20–52, 172 (2011). Translation in J. Math. Sci. (N.Y.) 185(5), 668–686 (2012)
Google Scholar
A. Friedman, F. Reitich, Quasi-static motion of a capillary drop. II. The three-dimensional case. J. Differ. Equ. 186(2), 509–557 (2002)
MATH
Google Scholar
M. Günther, G. Prokert, Existence results for the quasistationary motion of a free capillary liquid drop. Z. Anal. Anwendungen 16(2), 311–348 (1997)
MathSciNet
CrossRef
MATH
Google Scholar
M. Köhne, J. Prüss, M. Wilke, Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension. Math. Ann. 356(2), 737–792 (2013)
MathSciNet
CrossRef
MATH
Google Scholar
I.S. Mogilevskiĭ, V.A. Solonnikov, On the solvability of an evolution free boundary problem for the Navier-Stokes equations in Hölder spaces of functions, in Mathematical Problems Relating to the Navier-Stokes Equation. Series on Advances in Mathematics for Applied Sciences, vol. 11 (World Scientific Publications, River Edge, 1992), pp. 105–181
Google Scholar
P.B. Mucha, W. Zajączkowski, On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion. Appl. Math. (Warsaw) 27(3), 319–333 (2000)
Google Scholar
M. Padula, V.A. Solonnikov, On the global existence of nonsteady motions of a fluid drop and their exponential decay to a uniform rigid rotation, in Topics in Mathematical Fluid Mechanics. Quaderni di matematica, vol. 10 (Dipartimento di Matermatica della Seconda Universita di Nspoli, Caserta, 2002), pp. 185–218
Google Scholar
G. Prokert, Parabolic evolution equations for quasistationary free boundary problems in capillary fluid mechanics. Dissertation, Technische Universiteit Eindhoven, Eindhoven (1997)
MATH
Google Scholar
J. Prüss, Y. Shibata, S. Shimizu, G. Simonett, On well-posedness of incompressible two-phase flows with phase transitions: the case of equal densities. Evol. Equ. Control Theory 1(1), 171–194 (2012)
MathSciNet
CrossRef
MATH
Google Scholar
J. Prüss, S. Shimizu, On well-posedness of incompressible two-phase flows with phase transitions: the case of non-equal densities. J. Evol. Equ. 12(4), 917–941 (2012)
MathSciNet
CrossRef
MATH
Google Scholar
J. Prüss, S. Shimizu, G. Simonett, M. Wilke, On incompressible two-phase flows with phase transitions and variable surface tension, in Recent Developments of Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics (Birkhäuser/Springer, Basel, 2016), pp. 411–442
Google Scholar
J. Prüss, S. Shimizu, M. Wilke, Qualitative behaviour of incompressible two-phase flows with phase transitions: the case of non-equal densities. Commun. Partial Differ. Equ. 39(7), 1236–1283 (2014)
MathSciNet
CrossRef
MATH
Google Scholar
J. Prüss, G. Simonett, On the Rayleigh-Taylor instability for the two-phase Navier-Stokes equations. Indiana Univ. Math. J. 59(6), 1853–1871 (2010)
MathSciNet
CrossRef
MATH
Google Scholar
J. Prüss, G. Simonett, On the two-phase Navier-Stokes equations with surface tension. Interfaces Free Bound. 12(3), 311–345 (2010)
MathSciNet
CrossRef
MATH
Google Scholar
J. Prüss, G. Simonett, Analytic solutions for the two-phase Navier-Stokes equations with surface tension and gravity, in Parabolic Problems. Volume 80 of Progress in Nonlinear Differential Equations and Their Applications (Birkhäuser/Springer Basel AG, Basel, 2011), pp. 507–540
Google Scholar
J. Prüss, G. Simonett, On the manifold of closed hypersurfaces in \(\mathbb{R}^{n}\). Discrete Cont. Dyn. Sys. A 33, 5407–5428 (2013)
MathSciNet
CrossRef
MATH
Google Scholar
J. Prüss, G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations. Volume 105 of Monographs in Mathematics (Birkhäuser/Springer, Cham, 2016)
Google Scholar
J. Prüss, G. Simonett, M. Wilke, Invariant foliations near normally hyperbolic equilibria for quasilinear parabolic problems. Adv. Nonlinear Stud. 13(1), 231–243 (2013)
MathSciNet
CrossRef
MATH
Google Scholar
J. Prüss, G. Simonett, M. Wilke, On thermodynamically consistent Stefan problems with variable surface energy. Arch. Ration. Mech. Anal. 220(2), 603–638 (2016)
MathSciNet
CrossRef
MATH
Google Scholar
J. Prüss, G. Simonett, R. Zacher, On convergence of solutions to equilibria for quasilinear parabolic problems. J. Differ. Equ. 246(10), 3902–3931 (2009)
MathSciNet
CrossRef
MATH
Google Scholar
J. Prüss, G. Simonett, R. Zacher, On normal stability for nonlinear parabolic equations, in Dynamical Systems, Differential Equations and Applications, ed. by Xiaojie Hou. Discrete and Continuous Dynamical Systems. 7th AIMS Conference, Suppl. (American Institute of Mathematical Sciences, Springfield, 2009), pp. 612–621
Google Scholar
J. Prüss, G. Simonett, R. Zacher, On the qualitative behaviour of incompressible two-phase flows with phase transitions: the case of equal densities. Interfaces Free Bound. 15(4), 405–428 (2013)
MathSciNet
CrossRef
MATH
Google Scholar
J. Prüss, G. Simonett, R. Zacher, Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension. Arch. Ration. Mech. Anal. 207(2), 611–667 (2013)
MathSciNet
CrossRef
MATH
Google Scholar
Y. Shibata, S. Shimizu, On a free boundary problem for the Navier-Stokes equations. Differ. Integr. Equ. 20(3), 241–276 (2007)
MathSciNet
MATH
Google Scholar
Y. Shibata, S. Shimizu, On the L
p
-L
q
maximal regularity of the Neumann problem for the Stokes equations in a bounded domain. J. Reine Angew. Math. 615, 157–209 (2008)
MathSciNet
MATH
Google Scholar
Y. Shibata, S. Shimizu, Report on a local in time solvability of free surface problems for the Navier-Stokes equations with surface tension. Appl. Anal. 90(1), 201–214 (2011)
MathSciNet
CrossRef
MATH
Google Scholar
S. Shimizu, Local solvability of free boundary problems for the two-phase Navier-Stokes equations with surface tension in the whole space, in Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol. 80 (Birkhäuser/Springer Basel AG, Basel, 2011), pp. 647–686
Google Scholar
V.A. Solonnikov, Solvability of the problem of evolution of an isolated amount of a viscous incompressible capillary fluid. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 140, 179–186 (1984). Mathematical questions in the theory of wave propagation, 14
Google Scholar
V.A. Solonnikov, Unsteady flow of a finite mass of a fluid bounded by a free surface. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 152(Kraev. Zadachi Mat. Fiz. i Smezhnye Vopr. Teor. Funktsii18), 137–157, 183–184 (1986). Translat. J. Sov. Math. 40(5), 672–686 (1988)
Google Scholar
V.A. Solonnikov, Evolution of an isolated volume of a viscous incompressible capillary fluid for large time values. Vestnik Leningrad. Univ. Mat. Mekh. Astronom. (vyp. 3), 49–55, 128 (1987)
Google Scholar
V.A. Solonnikov, Unsteady motion of an isolated volume of a viscous incompressible fluid. Izv. Akad. Nauk SSSR Ser. Mat. 51(5), 1065–1087, 1118 (1987). Translat. Math. USSR-Izv. 31(2), 381405 (1988)
Google Scholar
V.A. Solonnikov, Unsteady motions of a finite isolated mass of a self-gravitating fluid. Algebra i Analiz 1(1), 207–249 (1989). Translat. Leningr. Math. J. 1(1), 227–276 (1990)
Google Scholar
V.A. Solonnikov, Solvability of a problem on the evolution of a viscous incompressible fluid, bounded by a free surface, on a finite time interval. Algebra i Analiz 3(1), 222–257 (1991). Translat. St. Petersburg Math. J. 3(1), 189–220 (1992)
Google Scholar
V.A. Solonnikov, On quasistationary approximation in the problem of motion of a capillary drop, in Topics in Nonlinear Analysis: The Herbert Amann Anniversary Volume, ed. by J. Escher, G. Simonett. Progress in Nonlinear Differential Equations and Their Applications, vol. 35 (Birkhäuser, Basel, 1999), pp. 643–671
Google Scholar
V.A. Solonnikov, Lectures on evolution free boundary problems: classical solutions, in Mathematical Aspects of Evolving Interfaces, Funchal, 2000. Lecture Notes in Mathematics, vol. 1812 (Springer, Berlin, 2003), pp. 123–175
Google Scholar
V.A. Solonnikov, L
q
-estimates for a solution to the problem about the evolution of an isolated amount of a fluid. J. Math. Sci. (N. Y.) 117(3), 4237–4259 (2003). Nonlinear problems and function theory.
Google Scholar
V.A. Solonnikov, On the stability of axisymmetric equilibrium figures of a rotating viscous incompressible fluid. Algebra i Analiz 16(2), 120–153 (2004). Translat. St. Petersburg Math. J. 16(2), 377–400 (2005)
Google Scholar
V.A. Solonnikov, On the stability of nonsymmetric equilibrium figures of a rotating viscous incompressible liquid. Interfaces Free Bound. 6(4), 461–492 (2004)
MathSciNet
CrossRef
MATH
Google Scholar
V.A. Solonnikov, On problem of stability of equilibrium figures of uniformly rotating viscous incompressible liquid, in Instability in Models Connected With Fluid Flows II, ed. by C. Bardos, A.V. Fursikov. International Mathematics Series (N. Y.), vol. 7 (Springer, New York, 2008), pp. 189–254
Google Scholar
V.A. Solonnikov, L
p
-theory of the problem of motion of two incompressible capillary fluids in a container. J. Math. Sci. (N.Y.) 198(6), 761–827 (2014). Problems in mathematical analysis. No. 75 (Russian)
Google Scholar
N. Tanaka, Two-phase free boundary problem for viscous incompressible thermocapillary convection. Jpn. J. Math. (N.S.) 21(1), 1–42 (1995)
Google Scholar
A. Tani, Small-time existence for the three-dimensional Navier-Stokes equations for an incompressible fluid with a free surface. Arch. Ration. Mech. Anal. 133(4), 299–331 (1996)
MathSciNet
CrossRef
MATH
Google Scholar
A. Tani, N. Tanaka, Large-time existence of surface waves in incompressible viscous fluids with or without surface tension. Arch. Ration. Mech. Anal. 130(4), 303–314 (1995)
MathSciNet
CrossRef
MATH
Google Scholar
Y. Wang, I. Tice, The viscous surface-internal wave problem: nonlinear Rayleigh-Taylor instability. Commun. Partial Differ. Equ. 37(11), 1967–2028 (2012)
MathSciNet
CrossRef
MATH
Google Scholar
M. Wilke, Rayleigh-Taylor Instability for the Two-Phase Navier-Stokes Equations with Surface Tension in Cylindrical Domains. Habil.-Schr. Halle, Univ., Naturwissenschaftliche Fakultät II (2013)
Google Scholar