Encyclopedia of Computer Graphics and Games

Living Edition
| Editors: Newton Lee

Accessibility of Virtual Reality for Persons with Disabilities

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-08234-9_68-1

Synonyms

Definition

Immersive virtual reality – i.e., completely blocking out the real world through a virtual reality display – is not currently universally usable or accessible to many persons with disabilities, such as persons with balance impairments.

Introduction

Virtual reality (VR) has traditionally been too expensive for the consumer market, which has constrained its applicability to high cost applications, such as soldier training, surgical training, and psychological therapy. However, with the decreasing costs of head mounted displays (HMD) and real-time tracking hardware, VR may soon be in homes all over the world. For example, HMDs such as the Oculus Rift (https://www.oculus.com/) for VR and Microsoft’s upcoming Hololens (https://www.microsoft.com/microsoft-hololens/) for augmented reality (AR) will change the way that users play games and experience the surrounding real world, respectively. Moreover, VR and AR can now...

This is a preview of subscription content, log in to check access.

References

  1. Adamovich, S., Fluet, G., Tunik, E., Merians, A.: Sensorimotor training in virtual reality: a review. NeuroRehabilitation 25(1), 29–44 (2009)Google Scholar
  2. Alankus, G., Lazar, A., May, M., Kelleher, C.: Towards customizable games for stroke rehabilitation. CHI, ACM (2010), Atlanta, GAGoogle Scholar
  3. Bardack, A., Bhandari, P., Doggett, J., Epstein, M., Gagliolo, N., Graff, S., Li, E., Petro, E., Sailey, M., Salaets, N.: EMG biofeedback videogame system for the gait rehabilitation of hemiparetic individuals. Thesis, in the Digital Repository at the University of Maryland, (2010)Google Scholar
  4. Betker, A., Desai, A., Nett, C., Kapadia, N., Szturm, T.: Game-based exercises for dynamic short-sitting balance rehabilitation of people with chronic spinal cord and traumatic brain injuries. Phys. Ther. 87(10), 1389 (2007)CrossRefGoogle Scholar
  5. Boian, R., Sharma, A., Han, C., Merians, A., Burdea, G., Adamovich, S., Recce, M., Tremaine, M., Poizner, H.: Virtual reality-based post-stroke hand rehabilitation. Medicine meets virtual reality 02/10: digital upgrades, applying Moore’s law to health: 64 (2002). Los Angeles, CAGoogle Scholar
  6. Broeren, J., Bjorkdahl, A., Claesson, L., Goude, D., Lundgren-Nilsson, A., Samuelsson, H., Blomstrand, C., Sunnerhagen, K., Rydmark, M.: Virtual rehabilitation after stroke. Stud. Health Technol. Inform. 136, 77–82 (2008)Google Scholar
  7. Burdea, G.: Virtual rehabilitation-benefits and challenges. Methods Inf. Med. 42(5), 519–523 (2003)Google Scholar
  8. Burke, J., McNeill, M., Charles, D., Morrow, P., Crosbie, J., McDonough, S.: Optimising engagement for stroke rehabilitation using serious games. Vis. Comput. 25(12), 1085–1099 (2009a)CrossRefGoogle Scholar
  9. Burke, J., McNeill, M., Charles, D., Morrow, P., Crosbie, J., McDonough, S.: Serious Games for Upper Limb Rehabilitation Following Stroke. IEEE Computer Society (2009)Google Scholar
  10. Čakrt, O., Chovanec, M., Funda, T., Kalitová, P., Betka, J., Zvěřina, E., Kolář, P., Jeřábek, J.: Exercise with visual feedback improves postural stability after vestibular schwannoma surgery. Eur. Arch. Otorhinolaryngol. 267(9), 1355–1360 (2010)CrossRefGoogle Scholar
  11. Cantu, M., Espinoza, E., Guo, R., Quarles, J.: Game cane: an assistive 3DUI for rehabilitation games. In: 3D User Interfaces (3DUI), 2014 I.E. Symposium on, IEEE (2014). Minneapolis, MNGoogle Scholar
  12. Crosbie, J., Lennon, S., McGoldrick, M., McNeill, M., Burke, J., McDonough, S.: Virtual reality in the rehabilitation of the upper limb after hemiplegic stroke: a randomised pilot study. In: Proceedings of the 7th ICDVRAT with ArtAbilitation, pp. 229–235. Maia (2008)Google Scholar
  13. Eng, K., Siekierka, E., Pyk, P., Chevrier, E., Hauser, Y., Cameirao, M., Holper, L., Hägni, K., Zimmerli, L., Duff, A.: Interactive visuo-motor therapy system for stroke rehabilitation. Med. Biol. Eng. Comput. 45(9), 901–907 (2007)CrossRefGoogle Scholar
  14. Flores, E., Tobon, G., Cavallaro, E., Cavallaro, F., Perry, J., Keller, T.: Improving Patient Motivation in Game Development for Motor Deficit Rehabilitation. ACM, New York (2008)CrossRefGoogle Scholar
  15. Flynn, S., Lange, B., Yeh, S., Rizzo, A.: Virtual reality rehabilitation–what do users with disabilities want? in the Proceedings of ICDVRAT 2008, Maia & Porto, Portugal (2008)Google Scholar
  16. Fung, J., Richards, C., Malouin, F., McFadyen, B., Lamontagne, A.: A treadmill and motion coupled virtual reality system for gait training post-stroke. Cyberpsychol. Behav. 9(2), 157–162 (2006)CrossRefGoogle Scholar
  17. Goude, D., Björk, S., Rydmark, M.: Game design in virtual reality systems for stroke rehabilitation. Stud. Health Technol. Inform. 125, 146 (2007)Google Scholar
  18. Ma, M., McNeill, M., Charles, D., McDonough, S., Crosbie, J., Oliver, L., McGoldrick, C.: Adaptive virtual reality games for rehabilitation of motor disorders. Universal Access in Human-Computer Interaction. Ambient Interaction, pp. 681–690. (2007). Bejing, ChinaGoogle Scholar
  19. Mei, C., Mason, L., Quarles, J.: How 3D Virtual Humans Built by Adolescents with ASD Affect Their 3D Interactions. ASSETS, Lisbon (2015)Google Scholar
  20. Merians, A., Poizner, H., Boian, R., Burdea, G., Adamovich, S.: Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabil. Neural Repair 20(2), 252 (2006)CrossRefGoogle Scholar
  21. Samaraweera, G., Perdomo, A., Quarles, J.: Applying latency to half of a self-avatar’s body to change real walking patterns. In: Virtual Reality (VR), 2015 IEEE.IEEE (2015). Arles, FranceGoogle Scholar
  22. SAVELab: VR Walk MS: San Antonio. From https://play.google.com/store/apps/details?id=com.SAVELab.MSWalk&hl=en (2015b)
  23. Sütbeyaz, S., Yavuzer, G., Sezer, N., Koseoglu, B.: Mirror therapy enhances lower-extremity motor recovery and motor functioning after stroke: a randomized controlled trial. Arch. Phys. Med. Rehabil. 88(5), 555–559 (2007)CrossRefGoogle Scholar
  24. Sveistrup, H.: Motor rehabilitation using virtual reality. J. NeuroEng. Rehabil. 1(1), 10 (2004)CrossRefGoogle Scholar
  25. Thikey, H., van Wjick, F., Grealy, M., Rowe, P.: A need for meaningful visual feedback of lower extremity function after stroke. IEEE (2011). Dublin, IrelandGoogle Scholar
  26. Tierney, N., Crouch, J., Garcia, H., Walker, M., Van Lunen, B., DeLeo, G., Maihafer, G., Ringleb, S.: Virtual reality in gait rehabilitation. MODSIM World (2007). Richmond, VAGoogle Scholar
  27. Verdonck, M., Ryan, S.: Mainstream technology as an occupational therapy tool: technophobe or technogeek? Br. J. Occup. Ther. 71(6), 253–256 (2008)CrossRefGoogle Scholar
  28. Wood, S., Murillo, N., Bach-y-Rita, P., Leder, R., Marks, J., Page, S.: Motivating, game-based stroke rehabilitation: a brief report. Top. Stroke Rehabil. 10(2), 134–140 (2003)CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Texas at San AntonioSan AntonioUSA